Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo-Jin Jeong is active.

Publication


Featured researches published by Soo-Jin Jeong.


Oncogene | 2005

Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

Soo-Jin Jeong; Cynthia A. Pise-Masison; Michael F. Radonovich; Hyeon Ung Park; John N. Brady

AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-κB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-κB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-κB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKβ phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKβ phosphorylation of IκBα in vitro suggesting selective activity of AKT on the IKKβ complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-κB activation and inhibition of p53 transcription activity.


Journal of Biological Chemistry | 2005

A Novel NF-κB Pathway Involving IKKβ and p65/RelA Ser-536 Phosphorylation Results in p53 Inhibition in the Absence of NF-κB Transcriptional Activity

Soo-Jin Jeong; Cynthia A. Pise-Masison; Michael F. Radonovich; Hyeon Ung Park; John N. Brady

Nuclear factor κB (NF-κB) plays an important role in regulating cellular transformation and apoptosis. The human T-cell lymphotropic virus type I protein, Tax, which is critical for viral transformation, modulates the transcription of several cellular genes through activation of NF-κB. We have demonstrated previously that Tax inhibits p53 activity through the p65/RelA subunit of NF-κB. We now present evidence that suggests that the upstream kinase IKKβ plays an important role in Tax-induced p53 inhibition through phosphorylation of p65/RelA at Ser-536. First, mouse embryo fibroblast (MEF) IKKβ–/–cells did not support Tax-mediated p53 inhibition, whereas MEFs lacking IKKα allowed Tax inhibition of p53. Second, transfection of IKKβ wild type (WT), but not a kinase-dead mutant, into IKKβ–/–cells rescued p53 inhibition by Tax. Third, the IKKβ-specific inhibitor SC-514 decreased the ability of Tax to inhibit p53. Fourth, we show that phosphorylation of p65/RelA at Ser-536 is important for Tax inhibition of p53 using MEF p65/RelA–/–cells transfected with p65/RelA WT or mutant plasmids. Moreover, Tax induced p65/RelA Ser-536 phosphorylation in WT or IKKα–/– cells but failed to induce the phosphorylation of p65/RelA Ser-536 in IKKβ–/–cells, suggesting a link between IKKβ and p65/RelA phosphorylation. Consistent with this observation, blocking IKKβ kinase activity by SC-514 decreases the phosphorylation of p65/RelA at Ser-536 in the presence of Tax in human T-cell lymphotropic virus type I-transformed cells. Finally, the ability of Tax to inhibit p53 is distinguished from the NF-κB transcription activation pathway. Our work, therefore, describes a novel Tax-NF-κB p65/RelA pathway that functions to inhibit p53 but does not require NF-κB transcription activity.


Oncogene | 2006

Human T-cell leukemia virus type 1 Tax attenuates γ -irradiation-induced apoptosis through physical interaction with Chk2

Hyeon Ung Park; Soo-Jin Jeong; Jeong Jh; Jay H. Chung; John N. Brady

Checkpoint kinase 2 (Chk2) is known to mediate diverse cellular responses to genotoxic stress. The fundamental role of Chk2 is to regulate the network of genome-surveillance pathways that coordinate cell-cycle progression with DNA repair and cell survival or death. Defects in Chk2 contribute to the development of both hereditary and sporadic human cancers. We now present evidence that the human T-cell leukemia virus type-1 (HTLV-1) Tax protein directly interacts with Chk2 and the kinase activity of Chk2 is inhibited by Tax. The physical interaction of Chk2 and Tax was observed by co-immunoprecipitation assays in HTLV-1-infected T cells (C81) as well as GST pull-down assays using purified proteins. Binding and kinase activity inhibition studies with Tax deletion mutants indicated that at least two domains of Tax mediate the interaction with Chk2. We have analysed the functional consequence of de novo expression of Tax upon the cellular DNA-damage-induced apoptosis, which is mediated by Chk2. Using transient transfection and TUNEL assay, we found that γ-irradiation-induced apoptosis was decreased in 293T and HCT-116 (p53−/−) cells expressing HTLV-1 Tax. Our studies demonstrate an important potential target of Tax in cellular transformation.


Journal of Virology | 2007

Modulation of the Brd4/P-TEFb Interaction by the Human T-Lymphotropic Virus Type 1 Tax Protein

Won-Kyung Cho; Meisheng Zhou; Moon Kyoo Jang; Keven Huang; Soo-Jin Jeong; Keiko Ozato; John N. Brady

ABSTRACT Positive transcription elongation factor (P-TEFb), which is composed of CDK9 and cyclin T1, plays an important role in cellular and viral gene expression. Our lab has recently demonstrated that P-TEFb is required for Tax transactivation of the viral long terminal repeat (LTR). P-TEFb is found in two major complexes: the inactive form, which is associated with inhibitory subunits 7SK snRNA and HEXIM1, and the active form, which is associated with, at least in part, Brd4. In this study, we analyzed the effect of Brd4 on human T-lymphotropic virus type 1 (HTLV-1) transcription. Overexpression of Brd4 repressed Tax transactivation of the HTLV-1 LTR in a dose-dependent manner. In vitro binding studies suggest that Tax and Brd4 compete for binding to P-TEFb through direct interaction with cyclin T1. Tax interacts with cyclin T1 amino acids 426 to 533, which overlaps the region responsible for Brd4 binding. In vivo, overexpression of Tax decreased the amount of 7SK snRNA associated with P-TEFb and stimulates serine 2 phosphorylation of the RNA polymerase II carboxyl-terminal domain, suggesting that Tax regulates the functionality of P-TEFb. Our results suggest the possibility that Tax may compete and functionally substitute for Brd4 in P-TEFb regulation.


Journal of Virology | 2006

Coactivator-Associated Arginine Methyltransferase 1 Enhances Transcriptional Activity of the Human T-Cell Lymphotropic Virus Type 1 Long Terminal Repeat through Direct Interaction with Tax

Soo-Jin Jeong; Hanxin Lu; Won-Kyung Cho; Hyeon Ung Park; Cynthia A. Pise-Masison; John N. Brady

ABSTRACT In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).


Journal of Virology | 2008

Small-Molecule Inhibitor Which Reactivates p53 in Human T-Cell Leukemia Virus Type 1-Transformed Cells

Kyung-Jin Jung; Arindam Dasgupta; Keven Huang; Soo-Jin Jeong; Cynthia A. Pise-Masison; Katerina V. Gurova; John N. Brady

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of the aggressive and fatal disease adult T-cell leukemia. Previous studies have demonstrated that the HTLV-1-encoded Tax protein inhibits the function of tumor suppressor p53 through a Tax-induced NF-κB pathway. Given these attributes, we were interested in the activity of small-molecule inhibitor 9-aminoacridine (9AA), an anticancer drug that targets two important stress response pathways, NF-κB and p53. In the present study, we have examined the effects of 9AA on HTLV-1-transformed cells. Treatment of HTLV-1-transformed cells with 9AA resulted in a dramatic decrease in cell viability. Consistent with these results, we observed an increase in the percentage of cells in sub-G1 and an increase in the number of cells positive by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay following treatment of HTLV-1-transformed cells with 9AA. In each assay, HTLV-1-transformed cells C8166, Hut102, and MT2 were more sensitive to treatment with 9AA than control CEM and peripheral blood mononuclear cells. Analyzing p53 function, we demonstrate that treatment of HTLV-1-transformed cells with 9AA resulted in an increase in p53 protein and activation of p53 transcription activity. Of significance, 9AA-induced cell death could be blocked by introduction of a p53 small interfering RNA, linking p53 activity and cell death. These results suggest that Tax-repressed p53 function in HTLV-1-transformed cells is “druggable” and can be restored by treatment with 9AA. The fact that 9AA induces p53 and inhibits NF-κB suggests a promising strategy for the treatment of HTLV-1-transformed cells.


Biochemical and Biophysical Research Communications | 2009

The prolyl isomerase Pin1 stabilizes the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein and promotes malignant transformation

Soo-Jin Jeong; Akihide Ryo; Naoki Yamamoto

The HTLV Tax protein is crucial for viral replication and malignant transformation. We investigated the possible role of peptidyl prolyl isomerase Pin1 in the positive regulation of the human T-cell leukemia virus type 1 Tax. Pin1 is highly expressed in adult T-cell leukemia (ATL) cells expressing Tax protein and forced expression of Pin1 in turn increases the Tax protein expression. Pin1 prolonged the protein half-life of Tax by suppressing the ubiquitination and subsequent lysosomal degradation of Tax. Pin1 interacts with phosphorylated Tax on its Ser160-Pro motif at the mitotic phase. Finally, we found that Pin1 plays a supporting role in Tax-mediated cell transformation. Our current study demonstrates an important role for Pin1 in the post-translational regulation of Tax and suggests that the targeting of Pin1 may offer a new insight into the pathogenesis of HTLV-1 related diseases.


Journal of Virology | 2008

Inhibition of Methyltransferases Results in Induction of G2/M Checkpoint and Programmed Cell Death in Human T-Lymphotropic Virus Type 1-Transformed Cells

Arindam Dasgupta; Kyung-Jin Jung; Soo-Jin Jeong; John N. Brady

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent for adult T-cell leukemia. The HTLV-1-encoded protein Tax transactivates the viral long terminal repeat and plays a critical role in virus replication and transformation. Previous work from our laboratory demonstrated that coactivator-associated arginine methytransferase 1, a protein arginine methytransferase, was important for Tax-mediated transactivation. To further investigate the role of methyltransferases in viral transcription, we utilized adenosine-2,3-dialdehyde (AdOx), an adenosine analog and S-adenosylmethionine-dependent methyltransferase inhibitor. The addition of AdOx decreased Tax transactivation in C81, Hut102, and MT-2 cells. Unexpectedly, we found that AdOx potently inhibited the growth of HTLV-1-transformed cells. Further investigation revealed that AdOx inhibited the Tax-activated NF-κB pathway, resulting in reactivation of p53 and induction of p53 target genes. Analysis of the NF-κB pathway demonstrated that AdOx treatment resulted in degradation of the IκB kinase complex and inhibition of NF-κB through stabilization of the NF-κB inhibitor IκBα. Our data further demonstrated that AdOx induced G2/M cell cycle arrest and cell death in HTLV-1-transformed but not control lymphocytes. These studies demonstrate that protein methylation plays an important role in NF-κB activation and survival of HTLV-1-transformed cells.


International Journal of Radiation Biology | 2005

Loss of mitochondrial membrane potential and caspase activation enhance apoptosis in irradiated K562 cells treated with herbimycin A.

Wol-Soon Jo; Min-Ho Jeong; Young-Hee Jin; Ji-Yeon Jang; Byung-Hyouk Nam; Seok-Hyun Son; Sunseob Choi; Young-Hyun Yoo; Chi-Dug Kang; Jae-Dong Lee; Soo-Jin Jeong

Purpose: We previously reported that herbimycin A (HMA) alters the mode of cell death of K562 cells induced by radiation and enhanced their radiosensitivity. In the present study, we explored the apoptosis-inducing activity of HMA and the fundamental mechanism via which it regulates radiation-induced cell death. Materials and methods: Chronic myelogenous leukemia (CML) cell line K562 was used. For X-irradiation and drug treatment, cells were plated at approximately 2 × 105 cells/ml. Exponentially growing cells were treated with 10 Gy of X-ray using a 6-MeV X-ray machine at a dose rate of 200 – 300 cGy/min. The cells were treated with 0.25 μM HMA immediately after irradiation and HMA remained for the entire culture period. The modes of cell death were discriminated by morphological changes, analysis of cell cycle, analysis of the mitochondrial events, and the expression of apoptosis-related proteins. Results: Our data demonstrates that radiation induced a significant time-dependent increase of cell death and failed to sustain a prolonged G2 arrest in K562 cells. Radiation-induced cell death caused the accumulation of cyclinB1 and weak nuclear fragmentation, suggesting a mitotic catastrophe. This mitotic catastrophe was dependent upon the mitochondrial permeability transition pore (PTP) opening and was independent of caspase-3. In contrast, K562 cells treated with radiation and HMA had an accelerated cell death and induced a p53-independent apoptosis. This apoptotic pathway was dependent upon an initial hyperpolarization of the mitochondrial inner membrane, following the release of cytochrome c and subsequent caspase-3 activation. Conclusions: Two mechanisms of radiation-induced cell death in K562 cells, mitotic catastrophe and apoptosis, are regulated through distinct pathways, mitochondria and caspase-independent and -dependent, respectively. The findings of this study may provide new insights into improving the efficiency of radiotherapy in CML patients.


Radiation Research | 2001

Protein Tyrosine Kinase Inhibitors Modulate Radiosensitivity and Radiation-Induced Apoptosis in K562 Cells

Soo-Jin Jeong; Young-Hee Jin; Chang-Woo Moon; Hae-Rahn Bae; Young-Hyun Yoo; Hyung-Sik Lee; Sang-Hwa Lee; Young-Jin Lim; Jae-Dong Lee; Min-Ho Jeong

Abstract Jeong, S-J., Jin, Y-H., Moon, C-W., Bae, H-R., Yoo, Y-H., Lee, H-S., Lee, S-H., Lim, Y-J., Lee, J-D. and Jeong, M-H. Protein Tyrosine Kinase Inhibitors Modulate Radiosensitivity and Radiation-Induced Apoptosis in K562 Cells. Radiat. Res. 156, 751–760 (2001). We studied the modulating effect of protein tyrosine kinase inhibitors on the response of cells of the human chronic myelogenous leukemia cell line K562 to radiation. The radiosensitivity of the cells was increased by treatment with herbimycin A and decreased by treatment with genistein. This modulating effect of protein tyrosine kinase inhibitors on radiation sensitivity was associated with the alteration of the mode of radiation-induced cell death. After X irradiation, the cells arrested in the G2 phase of the cell cycle, but these TP53–/– cells were unable to sustain cell cycle arrest. This G2-phase checkpoint deficit caused cell death. The morphological pattern of cell death was characterized by swelling of the cytoplasmic compartments, cytosolic vacuolation, disruption of the plasma membrane, less evident nuclear condensation, and faint DNA fragmentation, all of which were consistent with oncosis or cytoplasmic apoptosis. The nonreceptor protein tyrosine kinase inhibitor herbimycin A accelerated the induction of typical apoptosis by X irradiation, which was demonstrated by morphological assessments using nuclear staining and electron microscopy as well as oligonucleosomal fragmentation and caspase 3 activity. Herbimycin A is known to be a selective antagonist of the BCR/ABL kinase of Philadelphia chromosome-positive K562 cells; this kinase blocks the induction of apoptosis after X irradiation. Our results showed that the inhibition of protein tyrosine kinase by herbimycin A enhanced radiation-induced apoptosis in K562 cells. This effect was associated with the activation of caspase 3 and rapid abrogation of the G2-phase checkpoint with progression out of G2 into G1 phase. In contrast, the receptor-type protein tyrosine kinase inhibitor genistein protected K562 cells from all types of radiation-induced cell death through the inhibition of caspase 3 activity and prolonged maintenance of G2-phase arrest. Further investigations using this model may give valuable information about the mechanisms of radiation-induced apoptosis and about the radiosensitivity and radioresistance of chronic myelogenous leukemia cells having the Philadelphia chromosome.

Collaboration


Dive into the Soo-Jin Jeong's collaboration.

Top Co-Authors

Avatar

John N. Brady

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arindam Dasgupta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyung-Jin Jung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael F. Radonovich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge