Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo-Jin Yang is active.

Publication


Featured researches published by Soo-Jin Yang.


Antimicrobial Agents and Chemotherapy | 2008

Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding

Tiffanny Jones; Michael R. Yeaman; George Sakoulas; Soo-Jin Yang; Richard A. Proctor; Hans-Georg Sahl; Jacques Schrenzel; Yan Q. Xiong; Arnold S. Bayer

ABSTRACT Increasingly frequent reports have described the in vivo loss of daptomycin susceptibility in association with clinical treatment failures. The mechanism(s) of daptomycin resistance is not well understood. We studied an isogenic set of Staphylococcus aureus isolates from the bloodstream of a daptomycin-treated patient with recalcitrant endocarditis in which serial strains exhibited decreasing susceptibility to daptomycin. Since daptomycin is a membrane-targeting lipopeptide, we compared a number of membrane parameters in the initial blood isolate (parental) with those in subsequent daptomycin-resistant strains obtained during treatment. In comparison to the parental strain, resistant isolates demonstrated (i) enhanced membrane fluidity, (ii) increased translocation of the positively charged phospholipid lysyl-phosphotidylglycerol to the outer membrane leaflet, (iii) increased net positive surface charge (P < 0.05 versus the parental strain), (iv) reduced susceptibility to daptomycin-induced depolarization, permeabilization, and autolysis (P < 0.05 versus the parental strain), (v) significantly lower surface binding of daptomycin (P < 0.05 versus the parental strain), and (vi) increased cross-resistance to the cationic antimicrobial host defense peptides human neutrophil peptide 1 (hNP-1) and thrombin-induced platelet microbicidal protein 1 (tPMP-1). These data link distinct changes in membrane structure and function with in vivo development of daptomycin resistance in S. aureus. Moreover, the cross-resistance to hNP-1 and tPMP-1 may also impact the capacity of these daptomycin-resistant organisms to be cleared from sites of infection, particularly endovascular foci.


PLOS Pathogens | 2009

The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion.

Christoph M. Ernst; Petra Staubitz; Nagendra N. Mishra; Soo-Jin Yang; Gabriele Hornig; Hubert Kalbacher; Arnold S. Bayer; Dirk Kraus; Andreas Peschel

Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs) by the multiple peptide resistance factor (MprF) protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG) production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help to employ MprF as a target for new anti-virulence drugs.


Antimicrobial Agents and Chemotherapy | 2009

Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus aureus

Nagendra N. Mishra; Soo-Jin Yang; Ayumi Sawa; Aileen Rubio; Cynthia C. Nast; Michael R. Yeaman; Arnold S. Bayer

ABSTRACT Our previous studies of clinical daptomycin-resistant (Dapr) Staphylococcus aureus strains suggested that resistance is linked to the perturbations of several key cell membrane (CM) characteristics, including the CM order (fluidity), phospholipid content and asymmetry, and relative surface charge. In the present study, we examined the CM profiles of a well-known methicillin-resistant Staphylococcus aureus (MRSA) strain (MW2) after in vitro selection for DAP resistance by a 20-day serial passage in sublethal concentrations of DAP. Compared to levels for the parental strain, Dapr strains exhibited (i) decreased CM fluidity, (ii) the increased synthesis of total lysyl-phosphatidylglycerol (LPG), (iii) the increased flipping of LPG to the CM outer bilayer, and (iv) the increased expression of mprF, the gene responsible for the latter two phenotypes. In addition, we found that the expression of the dlt operon, which also increases positive surface charge, was enhanced in the Dapr mutants. These phenotypic and genotypic changes correlated with reduced DAP surface binding, mirroring observations made in clinical Dapr isolates. In this strain, serial exposure to DAP induced an increase in vancomycin MICs into the vancomycin-intermediate S. aureus (VISA) range (4 μg/ml) in parallel with increasing DAP MICs. Also, this Dapr strain exhibited significantly thicker cell walls than the parental strain, potentially correlating with the coevolution of the VISA phenotype and implicating cell wall structure and/or function in the Dapr phenotype. Importantly, despite the overexpression of mprF and dlt, the relative net positive surface charge was decreased in the Dapr mutants, suggesting that other factors contribute to the surface charge alterations and that a simple charge repulsion mechanism could not entirely explain the Dapr phenotype in these strains.


Journal of Bacteriology | 2003

The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance.

Kelly C. Rice; Brian A. Firek; Jeremy B. Nelson; Soo-Jin Yang; Toni G. Patton; Kenneth W. Bayles

Recent studies have shown that expression of the Staphylococcus aureus lrgAB operon inhibits murein hydrolase activity and decreases sensitivity to penicillin-induced killing. It was proposed that the lrgAB gene products function in a manner analogous to an antiholin, inhibiting a putative holin from transporting murein hydrolases out of the cell. In the present study the cidAB operon was identified and characterized based on the similarity of the cidA and cidB gene products to the products of the lrgAB operon. Zymographic and quantitative analyses of murein hydrolase activity revealed that mutation of the cidA gene results in decreased extracellular murein hydrolase activity compared to that of S. aureus RN6390, the parental strain. Complementation of cidA expression restored the wild-type phenotype, indicating that expression of the cidAB operon has a positive influence on extracellular murein hydrolase activity. The cidA mutant also displayed a significant decrease in sensitivity to the killing effects of penicillin. However, complementation of the cidA defect did not restore penicillin sensitivity to wild-type levels. Reverse transcriptase PCR also revealed that cidAB is maximally expressed during early exponential growth, opposite of what was previously observed for lrgAB expression. Based on these results, we propose that the cidAB operon encodes the holin-like counterpart of the lrgAB operon and acts in a manner opposite from that of lrgAB by increasing extracellular murein hydrolase activity and increasing sensitivity to penicillin-induced killing.


Antimicrobial Agents and Chemotherapy | 2012

Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium

George Sakoulas; Arnold S. Bayer; Joe Pogliano; Brian T. Tsuji; Soo-Jin Yang; Nagendra N. Mishra; Victor Nizet; Michael R. Yeaman; Pamela A. Moise

ABSTRACT We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive bacterial surface charge of VRE, correlating with enhanced bactericidal effects of cationic calcium-daptomycin and a diverse range of other cationic peptides in vitro. While the mechanism(s) of such β-lactam-mediated shifts in surface charge remains to be defined, these finding suggest a potential for β-lactam-mediated enhancement of activity of both daptomycin and innate host defense peptides against antibiotic-resistant bacteria.


Antimicrobial Agents and Chemotherapy | 2010

Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the "seesaw effect").

Soo-Jin Yang; Yan Q. Xiong; Susan Boyle-Vavra; Robert S. Daum; Tiffanny Jones; Arnold S. Bayer

ABSTRACT In vivo development of daptomycin resistance (DAPr) among Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA) strains, in conjunction with clinical treatment failures, has emerged as a major problem. This has raised the question of DAP-based combination regimens to enhance efficacy against such strains. We studied five recent DAP-susceptible (DAPs)/DAPr clinical MRSA strain pairs obtained from patients who failed DAP monotherapy regimens, as well as one DAPs/DAPr MRSA strain pair in which the resistant strain was generated by in vitro passage in DAP. Of note, we identified a DAP-oxacillin (OX) “seesaw” phenomenon in vitro in which development of DAPr was accompanied by a concomitant fall in OX resistance, as demonstrated by 3- to 4-fold decreases in the OX MIC, a susceptibility shift by population analyses, and enhanced early killing by OX in time-kill assays. In addition, the combination of DAP and OX exerted modest improvement in in vitro bactericidal effects. Using an experimental model of infective endocarditis and two DAPs/DAPr strain pairs, we demonstrated that (i) OX monotherapy was ineffective at clearing DAPr strains from any target tissue in this model (heart valve, kidneys, or spleen) and (ii) DAP-OX combination therapy was highly effective in DAPr strain clearances from these organs. The mechanism(s) of the seesaw effect remains to be defined but does not appear to involve excision of the staphylococcal cassette chromosome mec (SCCmec) that carries mecA.


The Journal of Infectious Diseases | 2009

Enhanced Expression of dltABCD Is Associated with the Development of Daptomycin Nonsusceptibility in a Clinical Endocarditis Isolate of Staphylococcus aureus

Soo-Jin Yang; Barry N. Kreiswirth; George Sakoulas; Michael R. Yeaman; Yan Q. Xiong; Ayumi Sawa; Arnold S. Bayer

Using isogenic clinical bloodstream Staphylococcus aureus strains from a patient with relapsing endocarditis, we investigated the transcriptional profiles of the mprF and dlt genes in the context of cell-surface charge and daptomycin nonsusceptibility. As in prior studies, a point mutation within mprF was observed in the daptomycin-nonsusceptible strain. However, neither the transcriptional profile of mprF nor the membrane phospholipid analyses were compatible with the anticipated mprF gain-in-function phenotype. In contrast, we demonstrated enhanced dlt expression coincident with increased positive surface charge and reduced daptomycin binding.


Antimicrobial Agents and Chemotherapy | 2010

Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in Staphylococcus aureus: Evidence for Multiple Resistance Mechanisms

Soo-Jin Yang; Cynthia C. Nast; Nagendra N. Mishra; Michael R. Yeaman; Paul D. Fey; Arnold S. Bayer

ABSTRACT The mechanism(s) of daptomycin (DAP) resistance (DAPr) is incompletely defined. Thickened cell walls (CWs) acting as either a mechanical barrier or an affinity trap for DAP have been purported to be a major contributor to the DAPr phenotype. To this end, we studied an isogenic set of methicillin-resistant Staphylococcus aureus (MRSA) isolates (pulsotype USA 300) from the bloodstream of a DAP-treated patient with endocarditis in which serial strains exhibited increasing DAPr. Of interest, the DAPr isolate differed from its parental strain in several parameters, including acquisition of a point mutation within the putative synthase domain of the mprF gene in association with enhanced mprF expression, increased synthesis of lysyl-phosphotidylglycerol, an enhanced positive envelope charge, and reduced DAP surface binding. Transmission electron microscopy (TEM) revealed no significant increases in CW thickness in the two DAPr isolates (MRSA 11/21 and REF2145) compared with that in the DAP-susceptible (DAPs) parental strain, MRSA 11/11. The rates of Triton X-100-induced autolysis were also identical for the strain set. Furthermore, among six additional clinically isolated DAPs/DAPrS. aureus strain pairs, only three DAPr isolates exhibited CWs significantly thicker than those of the respective DAPs parent. These data confirm that CW thickening is neither universal to DAPrS. aureus nor sufficient to yield the DAPr phenotype among S. aureus strains.


Antimicrobial Agents and Chemotherapy | 2009

Regulation of mprF in Daptomycin-Nonsusceptible Staphylococcus aureus Strains

Soo-Jin Yang; Yan Q. Xiong; Paul M. Dunman; Jacques Schrenzel; Patrice Francois; Andreas Peschel; Arnold S. Bayer

ABSTRACT We used a well-characterized isogenic set of clinical bloodstream Staphylococcus aureus strains to study (i) regulation of mprF-mediated phosphatidylglycerol lysinylation in the contexts of in vitro daptomycin (DAP) nonsuceptibility and (ii) the role of mprF mutation in endovascular virulence. We observed a correlation between increased expression of a mutant mprF gene and reduced in vitro DAP susceptibility. There were no detectable fitness differences between strains in experimental infective endocarditis.


Journal of Bacteriology | 2005

Acetic Acid Induces Expression of the Staphylococcus aureus cidABC and lrgAB Murein Hydrolase Regulator Operons

Kelly C. Rice; Jeremy B. Nelson; Toni G. Patton; Soo-Jin Yang; Kenneth W. Bayles

The Staphylococcus aureus lrg and cid operons encode homologous proteins that regulate extracellular murein hydrolase activity and penicillin tolerance in a diametrically opposing manner. Although their specific regulatory functions remain unknown, it has been postulated that the functions of CidA and LrgA are analogous to those of bacteriophage holins and antiholins, respectively, and that these proteins serve as molecular control elements of bacterial programmed cell death. Although these studies demonstrated that cidBC transcription is abundant in sigmaB-proficient strains, cidABC transcription was only minimally expressed under standard growth conditions. In this study, we demonstrate that cidABC and lrgAB transcription in the clinical isolate UAMS-1 is induced by growth in the presence of 35 mM glucose and that this enhances murein hydrolase activity and decreases tolerance to vancomycin and rifampin. The effect of glucose on murein hydrolase activity was not observed in the cidA mutant, indicating that the induction of this activity was dependent on enhanced cidABC expression. Furthermore, we demonstrate that the effects of glucose on cidABC and lrgAB transcription are mediated by the generation of acetic acid produced by the metabolism of this and other carbon sources. These results shed new light on the control of the S. aureus cidABC and lrgAB genes and demonstrate that these operons, as well as murein hydrolase activity and antibiotic tolerance, are responsive to carbohydrate metabolism.

Collaboration


Dive into the Soo-Jin Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Ho Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Q. Xiong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun Taek Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge