Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo-Jin Yeom is active.

Publication


Featured researches published by Soo-Jin Yeom.


BMC Biotechnology | 2015

A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments

Dae-Hee Lee; Su-Lim Choi; Eugene Rha; Soo Jin Kim; Soo-Jin Yeom; Jae-Hee Moon; Seung-Goo Lee

BackgroundAlkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome.ResultsThe gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca2+ and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology.ConclusionsThe presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.


PLOS ONE | 2014

Controlled localization of functionally active proteins to inclusion bodies using leucine zippers.

Su-Lim Choi; Sang Jun Lee; Soo-Jin Yeom; Hyun Ju Kim; Young Ha Rhee; Heung-Chae Jung; Seung-Goo Lee

Inclusion bodies (IBs) are typically non-functional particles of aggregated proteins. However, some proteins in fusion with amyloid-like peptides, viral coat proteins, and cellulose binding domains (CBDs) generate IB particles retaining the original functions in cells. Here, we attempted to generate CBD IBs displaying functional leucine zipper proteins (LZs) as bait for localizing cytosolic proteins in E. coli. When a red fluorescent protein was tested as a target protein, microscopic observations showed that the IBs red-fluoresced strongly. When different LZ pairs with KDs of 8–1,000 µM were tested as the bait and prey, the localization of the red fluorescence appeared to change following the affinities between the LZs, as observed by fluorescence imaging and flow cytometry. This result proposed that LZ-tagged CBD IBs can be applied as an in vivo matrix to entrap cytosolic proteins in E. coli while maintaining their original activities. In addition, easy detection of localization to IBs provides a unique platform for the engineering and analyses of protein-protein interactions in E. coli.


Metabolic Engineering | 2017

Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

Gui Hwan Han; Wonjae Seong; Yaoyao Fu; Paul Kyung-Seok Yoon; Seong Keun Kim; Soo-Jin Yeom; Dae-Hee Lee; Seung-Goo Lee

Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.


PLOS ONE | 2013

Generating in vivo cloning vectors for parallel cloning of large gene clusters by homologous recombination.

Jeongmin Lee; Eugene Rha; Soo-Jin Yeom; Dae-Hee Lee; Eui-Sung Choi; Seung-Goo Lee

A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR), requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb) was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 104 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb) and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb), the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.


Scientific Reports | 2018

Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds

Kil Koang Kwon; Dae-Hee Lee; Sujin Kim; Su-Lim Choi; Eugene Rha; Soo-Jin Yeom; Bindu Subhadra; Jinhyuk Lee; Ki Jun Jeong; Seung-Goo Lee

Genetic circuit-based biosensors are useful in detecting target metabolites or in vivo enzymes using transcription factors (Tx) as a molecular switch to express reporter signals, such as cellular fluorescence and antibiotic resistance. Herein, a phenol-detecting Tx (DmpR) was employed as a critical tool for enzyme engineering, specifically for the rapid analysis of numerous mutants with multiple mutations at the active site of tryptophan-indole lyase (TIL, EC 4.1.99.1). Cellular fluorescence was monitored cell-by-cell using flow cytometry to detect the creation of phenolic compounds by a new tyrosine-phenol-lyase (TPL, EC 4.1.99.2). In the TIL scaffold, target amino acids near the indole ring (Asp137, Phe304, Val394, Ile396 and His463) were mutated randomly to construct a large diversity of specificity variations. Collection of candidate positives by cell sorting using flow cytometry and subsequent shuffling of beneficial mutations identified a critical hit with four mutations (D137P, F304D, V394L, and I396R) in the TIL sequence. The variant displayed one-thirteenth the level of TPL activity, compared with native TPLs, and completely lost the original TIL activity. The findings demonstrate that hypersensitive, Tx-based biosensors could be useful critically to generate new activity from a related template, which would alleviate the current burden to high-throughput screening.


Biochemical and Biophysical Research Communications | 2018

Development of a novel cellulase biosensor that detects crystalline cellulose hydrolysis using a transcriptional regulator

Kil Koang Kwon; Soo-Jin Yeom; Dae-Hee Lee; Ki Jun Jeong; Seung-Goo Lee

Successful utilization of cellulose as renewable biomass depends on the development of economically feasible technologies, which can aid in enzymatic hydrolysis. In this study, we developed a whole-cell biosensor for detecting cellulolytic activity that relies on the recognition of cellobiose using the transcriptional factor CelR from Thermobifida fusca and transcriptional activation of its downstream gfp reporter gene. The fluorescence intensity of whole-cell biosensor, which was named as cellobiose-detectible genetic enzyme screening system (CBGESS), was directly proportional to the concentration of cellobiose. The strong fluorescence intensity of CBGESS demonstrated the ability to detect cellulolytic activity with two cellulosic substrates, carboxymethyl cellulose and p-nitrophenyl β-D-cellobioside in cellulase-expressing Escherichia coli. In addition, CBGESS easily sensed crystalline cellulolytic activity when commercial Celluclast 1.5L was dropped on an Avicel plate. Therefore, CBGESS is a powerful tool for detecting cellulolytic activity with high sensitivity in the presence of soluble or insoluble cellulosic substrates. CBGESS may be further applied to excavate novel cellulases or microbes from both genetic libraries and various environments.


PLOS ONE | 2017

Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion

Soo-Jin Yeom; Gui Hwan Han; M.D. Kim; Kil Koang Kwon; Yaoyao Fu; Haseong Kim; Hye Won Lee; Dae-Hee Lee; Heung-Chae Jung; Seung-Goo Lee

Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications.


PLOS ONE | 2016

Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions

Soo-Jin Yeom; Dae-Hee Lee; Yu Jung Kim; Jeongmin Lee; Kil Koang Kwon; Gui Hwan Han; Haseong Kim; Hak-Sung Kim; Seung-Goo Lee

Plasmid-based gene expression is a fundamental tool in the field of biotechnology. However, overexpression of genes of interest with multi-copy plasmids often causes detrimental effects on host cells. To overcome this problem, chromosomal integration of target genes has been used for decades; however, insufficient protein expression occurred with this method. In this study, we developed a novel cloning and expression system named the chromosomal vector (ChroV) system, that has features of stable and high expression of target genes on the F′ plasmid in the Escherichia coli JM109(DE3) strain. We used an RMT cluster (KCTC 11994BP) containing a silent cat gene from a previous study to clone a gene into the F′ plasmid. The ChroV system was applied to clone two model targets, GFPuv and carotenoids gene clusters (4 kb), and successfully used to prove the inducible tightly regulated protein expression in the F′ plasmid. In addition, we verified that the expression of heterologous genes in ChroV system maintained stably in the absence of antibiotics for 1 week, indicating ChroV system is applicable to antibiotics-free production of valuable proteins. This protocol can be widely applied to recombinant protein expression for antibiotics-free, stable, and genome-based expression, providing a new platform for recombinant protein synthesis in E. coli. Overall, our approach can be widely used for the economical and industrial production of proteins in E. coli.


Journal of Biotechnology | 2016

Improved metagenome screening efficiency by random insertion of T7 promoters.

Yu Jung Kim; Haseong Kim; Seo Hyeon Kim; Eugene Rha; Su-Lim Choi; Soo-Jin Yeom; Hak-Sung Kim; Seung-Goo Lee


ACS Synthetic Biology | 2016

A Cell–Cell Communication-Based Screening System for Novel Microbes with Target Enzyme Activities

Haseong Kim; Eugene Rha; Wonjae Seong; Soo-Jin Yeom; Dae-Hee Lee; Seung-Goo Lee

Collaboration


Dive into the Soo-Jin Yeom's collaboration.

Top Co-Authors

Avatar

Seung-Goo Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Dae-Hee Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Kil Koang Kwon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Eugene Rha

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Haseong Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Wonjae Seong

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Su-Lim Choi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Gui Hwan Han

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Paul Kyung-Seok Yoon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Seong Keun Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge