Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo Seok Hwang is active.

Publication


Featured researches published by Soo Seok Hwang.


Immunology | 2010

HHQ and PQS, two Pseudomonas aeruginosa quorum‐sensing molecules, down‐regulate the innate immune responses through the nuclear factor‐κB pathway

Kiwan Kim; Young Uk Kim; Byung Hee Koh; Soo Seok Hwang; Seol-Hee Kim; François Lépine; You-Hee Cho; Gap Ryol Lee

To explore whether bacterial secreted 4‐hydroxy‐2‐alkylquinolines (HAQs) can regulate host innate immune responses, we used the extracts of bacterial culture supernatants from a wild‐type (PA14) and two mutants of Pseudomonas aeruginosa that have defects in making HAQs. Surprisingly, the extract of supernatants from the P. aeruginosa pqsA mutant that does not make HAQs showed strong stimulating activity for the production of innate cytokines such as tumour necrosis factor‐α and interleukin‐6 in the J774A.1 mouse monocyte/macrophage cell line, whereas the extract from the wild‐type did not. The addition of 4‐hydroxy‐2‐heptylquinoline (HHQ) or 2‐heptyl‐3,4‐dihydroxyquinoline (PQS, Pseudomonas quinolone signal) to mammalian cell culture media abolished this stimulating activity of the extracts of supernatants from the pqsA mutant on the expression of innate cytokines in J774A.1 cells and in the primary bronchoalveolar lavage cells from C57BL/6 mice, suggesting that HHQ and PQS can suppress the host innate immune responses. The pqsA mutant showed reduced dissemination in the lung tissue compared with the wild‐type strain in a mouse in vivo intranasal infection model, suggesting that HHQ and PQS may play a role in the pathogenicity of P. aeruginosa. HHQ and PQS reduced the nuclear factor‐κB (NF‐κB) binding to its binding sites and the expression of NF‐κB target genes, and PQS delayed inhibitor of κB degradation, indicating that the effect of HHQ and PQS was mediated through the NF‐κB pathway. Our results suggest that HHQ and PQS produced by P. aeruginosa actively suppress host innate immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma

Byung Hee Koh; Soo Seok Hwang; Joo Young Kim; Wonyong Lee; Min-Jong Kang; Chun Geun Lee; Jung Won Park; Richard A. Flavell; Gap Ryol Lee

Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation

Soo Seok Hwang; Young Uk Kim; Sumin Lee; Sung Woong Jang; Min Kyung Kim; Byung Hee Koh; Wonyong Lee; Joomyeong Kim; Abdallah Souabni; Meinrad Busslinger; Gap Ryol Lee

The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Hypersensitive site 6 of the Th2 locus control region is essential for Th2 cytokine expression

Adam Williams; Gap Ryol Lee; Charalampos G. Spilianakis; Soo Seok Hwang; Stephanie C. Eisenbarth; Richard A. Flavell

The T helper type 2 (Th2) cytokine genes Il4, Il5, and Il13 are contained within a 140-kb region of mouse chromosome 11 and their expression is controlled by a locus control region (LCR) embedded within this locus. The LCR is composed of a number of DNase I–hypersensitive sites (HSs), which are believed to encompass the regulatory core of the LCR. To determine the function of these sites, mutant mice were generated in which combinations of these HSs had been deleted from the endogenous LCR, and the effect on Th2 cytokine expression was assessed through the use of in vivo and in vitro models. These experiments revealed that, although all of the hypersensitive sites analyzed are important for appropriate LCR function, some sites are more important than others in regulating cytokine expression. Interestingly, each LCR mutation showed contrasting effects on cytokine expression, in some cases with mutants displaying opposing phenotypes between in vitro cultures and in vivo immunizations. These studies indicated that Rad50 hypersensitive site 6 was the singularly most important HS for Th2 cytokine expression, displaying consistent reductions in cytokine levels in all models tested. Furthermore analysis of chromatin modifications revealed that deletion of Rad50 hypersensitive site 6 impacted epigenetic modifications at the promoters of the Il4, Il5, and Il13 genes as well as other regulatory sites within the Th2 locus.


Nature Communications | 2016

YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity

Soo Seok Hwang; Sung Woong Jang; Min Kyung Kim; Lark Kyun Kim; Bong Sung Kim; Hyeong Su Kim; Kiwan Kim; Wonyong Lee; Richard A. Flavell; Gap Ryol Lee

Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Foxp3 is the key transcription factor for Treg-cell differentiation and function; however, molecular mechanisms for its negative regulation are poorly understood. Here we show that YY1 expression is lower in Treg cells than Tconv cells, and its overexpression causes a marked reduction of Foxp3 expression and abrogation of suppressive function of Treg cells. YY1 is increased in Treg cells under inflammatory conditions with concomitant decrease of suppressor activity in dextran sulfate-induced colitis model. YY1 inhibits Smad3/4 binding to and chromatin remodelling of the Foxp3 locus. In addition, YY1 interrupts Foxp3-dependent target gene expression by physically interacting with Foxp3 and by directly binding to the Foxp3 target genes. Thus, YY1 inhibits differentiation and function of Treg cells by blocking Foxp3.


PLOS ONE | 2014

PPARγ Negatively Regulates T Cell Activation to Prevent Follicular Helper T Cells and Germinal Center Formation

Hong Jai Park; Do Hyun Kim; Jin-Young Choi; Won Ju Kim; Ji Yun Kim; Alireza G. Senejani; Soo Seok Hwang; Lark Kyun Kim; Zuzana Tobiasova; Gap Ryol Lee; Joe Craft; Alfred L. M. Bothwell; Je Min Choi

Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.


Immunology | 2010

GATA-binding protein-3 regulates T helper type 2 cytokine and ifng loci through interaction with metastasis-associated protein 2.

Soo Seok Hwang; Sumin Lee; Wonyong Lee; Gap Ryol Lee

GATA‐binding protein‐3 (GATA‐3) regulates the T helper type 2 (Th2) cytokine locus through induction of chromatin remodelling. However, the molecular mechanism for this is poorly understood. To understand this mechanism better, we screened GATA‐3 interacting proteins using affinity purification and mass spectrometry. We found that GATA‐3 bound to metastasis‐associated protein 2 (MTA‐2), a component of the NuRD chromatin remodelling complex. GATA‐3 and MTA‐2 in turn bound to several regulatory regions of the Th2 cytokine locus and the ifng promoter. Cell transfection assay showed that MTA‐2 acted as an antagonist with GATA‐3 in the expression of Th2 cytokines, but co‐operated with GATA‐3 in the repression of the ifng gene expression. These results suggest that GATA‐3 interacts with MTA‐2 to co‐ordinately regulate Th2 cytokine and ifng loci during T helper cell differentiation.


Journal of Experimental Medicine | 2017

PTEN drives Th17 cell differentiation by preventing IL-2 production.

Hyeong Su Kim; Sung Woong Jang; Wonyong Lee; Kiwan Kim; Hyogon Sohn; Soo Seok Hwang; Gap Ryol Lee

T helper 17 (Th17) cells are a CD4+ T cell subset that produces IL-17A to mediate inflammation and autoimmunity. IL-2 inhibits Th17 cell differentiation. However, the mechanism by which IL-2 is suppressed during Th17 cell differentiation remains unclear. Here, we show that phosphatase and tensin homologue (PTEN) is a key factor that regulates Th17 cell differentiation by suppressing IL-2 production. Th17-specific Pten deletion (Ptenfl/flIl17acre) impairs Th17 cell differentiation in vitro and ameliorated symptoms of experimental autoimmune encephalomyelitis (EAE), a model of Th17-mediated autoimmune disease. Mechanistically, Pten deficiency up-regulates IL-2 and phosphorylation of STAT5, but reduces STAT3 phosphorylation, thereby inhibiting Th17 cell differentiation. PTEN inhibitors block Th17 cell differentiation in vitro and in the EAE model. Thus, PTEN plays a key role in Th17 cell differentiation by blocking IL-2 expression.


Genes & Development | 2016

Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy

Hong-Yeoul Ryu; Nicole R. Wilson; Sameet Mehta; Soo Seok Hwang; Mark Hochstrasser

Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI-CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4-Not deadenylase complex, respectively-suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.


Biochimica et Biophysica Acta | 2016

Role of OCT-1 and partner proteins in T cell differentiation.

Soo Seok Hwang; Lark Kyun Kim; Gap Ryol Lee; Richard A. Flavell

The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.

Collaboration


Dive into the Soo Seok Hwang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge