Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo-Young Yum is active.

Publication


Featured researches published by Soo-Young Yum.


Molecular Therapy | 2016

Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis

Hyun-Kyung Chang; Pyung-Hwan Kim; Hyunmin Cho; Soo-Young Yum; Young Jin Choi; YeonSung Son; Dabin Lee; Insung Kang; Kyung-Sun Kang; Goo Jang; Je-Yoel Cho

Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3–5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis.


Stem Cells Translational Medicine | 2017

Targeted Genome Engineering to Control VEGF Expression in Human Umbilical Cord Blood‐Derived Mesenchymal Stem Cells: Potential Implications for the Treatment of Myocardial Infarction

Hyunmin Cho; Pyung-Hwan Kim; Hyun-Kyung Chang; Yi-ming Shen; Kwaku Bonsra; Byung-Jae Kang; Soo-Young Yum; Joo Hyun Kim; So-Yeong Lee; Mincheol Choi; Hyongbum Kim; Goo Jang; Je-Yoel Cho

Human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell‐based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas. Thus, a controllable system to induce therapeutic levels of VEGF is required for cell therapy. We generated an inducible VEGF‐secreting stem cell (VEGF/hUCB‐MSC) that controls the expression of VEGF and tested the therapeutic efficacy in rat myocardial infarction (MI) model to apply functional stem cells to MI. To introduce the inducible VEGF gene cassette into a safe harbor site of the hUCB‐MSC chromosome, the transcription activator‐like effector nucleases system was used. After confirming the integration of the cassette into the locus, VEGF secretion in physiological concentration from VEGF/hUCB‐MSCs after doxycycline (Dox) induction was proved in conditioned media. VEGF secretion was detected in mice implanted with VEGF/hUCB‐MSCs grown via a cell sheet system. Vessel formation was induced in mice transplanted with Matrigel containing VEGF/hUCB‐MSCs treated with Dox. Moreover, seeding of the VEGF/hUCB‐MSCs onto the cardiac patch significantly improved the left ventricle ejection fraction and fractional shortening in a rat MI model upon VEGF induction. Induced VEGF/hUCB‐MSC patches significantly decreased the MI size and fibrosis and increased muscle thickness, suggesting improved survival of cardiomyocytes and protection from MI damage. These results suggest that our inducible VEGF‐secreting stem cell system is an effective therapeutic approach for the treatment of MI. Stem Cells Translational Medicine 2017;6:1040–1051


Scientific Reports | 2016

Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing

Soo-Young Yum; Song-Jeon Lee; Hyunmin Kim; Woo-Jae Choi; JiHyun Park; WonWu Lee; Hee-Soo Kim; Hyeong-Jong Kim; Seong-Hun Bae; Je-Hyeong Lee; Joo-Yeong Moon; Ji-Hyun Lee; Choongil Lee; Bongjun Son; Sanghoon Song; Su-Min Ji; Seong-Jin Kim; Goo Jang

Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two. Some of them expressed strong fluorescence and the transgene in the oocytes from a superovulating one were detected by PCR and sequencing. To investigate genomic variants by the transgene transposition, whole genomic DNA were analyzed by NGS. We found that preferred transposable integration (TA or TTAA) was identified in their genome. Even though multi-copies (i.e. fifteen) were confirmed, there was no significant difference in genome instabilities. In conclusion, we demonstrated that transgenic cattle using the DNA transposon system could be efficiently generated, and all those animals could be a valuable resource for agriculture and veterinary science.


Zygote | 2015

Disruption of exogenous eGFP gene using RNA-guided endonuclease in bovine transgenic somatic cells.

Woo-Jae Choi; Soo-Young Yum; Song-Jeon Lee; WonWu Lee; JiHyun Lee; Seokjoong Kim; Okjae Koo; Byeong-Chun Lee; Goo Jang

Genome-editing technologies are considered to be an important tool for generating gene knockout cattle models. Here, we report highly efficient disruption of a chromosomally integrated eGFP gene in bovine somatic cells using RNA-guided endonucleases, a new class of programmable nucleases developed from a bacterial Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. In the present study, we obtained homogenously eGFP-expressing primary fibroblasts from cloned bovine transgenic embryonic tissues and employed them for further analysis. CRISPR/Cas9 plasmids specifically targeting the eGFP gene were transfected into the eGFP fibroblasts by electroporation. After 10 days of culture, more than 40% of the cells had lost eGFP expression in fluorescence activated cell sorting (FACS) analysis. Targeted sequences of the transfected cells were analyzed, and various small indel mutations (6-203 bp deletions) in the target sequence were found. The fibroblasts mutated with the CRISPR/Cas9 system were applied for somatic cell nuclear transfer, and the reconstructed embryos were successfully developed into the blastocyst stage. In conclusion, the CRISPR/Cas9 system was successfully utilized in bovine cells and cloned embryos. This will be a useful technique to develop livestock transgenesis for agricultural science.


Journal of animal science and biotechnology | 2018

Development of genome engineering technologies in cattle: from random to specific

Soo-Young Yum; Ki-Young Youn; Woo-Jae Choi; Goo Jang

The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure. However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g., ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.


Prion | 2015

Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells

Woo-Jae Choi; Eunji Kim; Soo-Young Yum; Choongil Lee; Jihyun Lee; JoonHo Moon; Sisitha Ramachandra; Buddika Oshadi Malaweera; Jongki Cho; Jin-Soo Kim; Seokjoong Kim; Goo Jang

abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle.


bioRxiv | 2018

Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements

Byungjin Hwang; Wookjae Lee; Soo-Young Yum; Yujin Jeon; Namjin Cho; Goo Jang; Duhee Bang

Determining cell lineage and function is critical to understanding human physiology and pathology. Although advances in lineage tracing methods have provided new insight into cell fate, defining cellular diversity at the mammalian level remains a challenge. Here, we developed a genome editing strategy using a cytidine deaminase fused with inactive Cas9 (dCas9) to specifically target endogenous interspersed repeat regions in mammalian cells. The resulting mutation patterns served as a genetic barcode, which was induced by targeted mutagenesis with single-guide RNA (sgRNA), leveraging substitution events, and subsequent read out by a single primer pair. By analyzing interspersed mutation signatures, we show the accurate reconstruction of cell lineage using both bulk cell and single-cell data. We envision that our genetic barcode system will enable fine-resolution mapping of organismal development in healthy and diseased mammalian states.


Reproduction, Fertility and Development | 2017

204 POTENTIAL OF GREEN FLUORESCENT PROTEIN LOCUS FOR GENE EDITING IN DNA TRANSPOSON-PRODUCED TRANSGENIC CATTLE

Soo-Young Yum; Seung-Jae Lee; Hyekyeong Kim; Changha Lee; Hyunsook Kim; H.-J. Kim; Won-Il Choi; Seokyung Hahn; J.H. Lee; Sun-Uk Kim; Goo Jang

Recently, we published on the efficient production of transgenic cattle using the DNA transposon system (Yum et al. 2016 Sci. Rep. 6, 27185). In that study, 8 transgenic cattle were born following transposon-mediated gene delivery system (Sleeping Beauty and Piggybac transposon) via microinjection of zygotes. In the analysis of their genomic stability using next-generation sequencing, there was no significant difference in the number of genomic variants between transgenic and nontransgenic cattle. In this study, we have described current status of those transgenic cattle in term of health, germ-line transmission, and application. All the transgenic cattle have grown up to date (the oldest being 30 months old, the youngest being 12 months old) without any health issue. In general blood analysis, there were not any significant changes between transgenic cattle and wild type. Because the transgene (green fluorescent protein; GFP) expression is constitutively active and has strong expression, it could be visualised without fluorescence equipment. One of transgenic male cattle reached puberty and semen was collected. Over 200 frozen semen straws were produced and some were used for IVF. In every IVF replication, around 80% blastocysts expressed the GFP. Over 36 GFP blastocysts were frozen for embryo transfer in the future, and we are planning to crossbreed for generating homozygotic transgenic cattle. Another application is to use the GFP locus to gene-edit the transgenic cattle, as long-term expression of transgene did not affect their health. In 1 cell stage, embryos produced using GFP frozen-thawed semen, single guide RNA for GFP, Cas9, together with donor DNA that included RFP and homology arms to link the double-strand break of single guide RNA target site, were co-injected and RFP was observed. Knockout/-in for editing GFP locus using CRISPR-Cas9 might be a valuable approach for the next generation of transgenic models by microinjection. In conclusion, we demonstrated that transgenic cattle via transposon are healthy to date and germ-line competence was confirmed. The GFP locus will be used as the target region for future gene engineering via genome-editing technology. Finally, all those animals could be a valuable agricultural and veterinary science resource for studying the effects of gene manipulation on disease resistance and food production.


Reproduction, Fertility and Development | 2017

205 PRODUCTION OF Cas9-EXPRESSING CATTLE USING DNA TRANSPOSON

Seokyung Hahn; Soo-Young Yum; Seung-Jae Lee; Changha Lee; Hyunsook Kim; H.-J. Kim; Won-Il Choi; J.H. Lee; Goo Jang

A genome-editing technology, CRISPR/Cas9 system is proved to be a powerful tool for knockout and knock-in in various species. When 2 components [Cas9 and single guide (sg) RNA] are delivered into cells or embryos, the events of gene editing occur. Because Cas9 is essential for every gene editing based on the CRISPR/Cas9 system, some studies reported that efficiency of gene editing would be increased as Cas9 was integrated into cells or animals. Accordingly, if the Cas9-expressing cattle is born, it would be broadly used for gene editing in cattle. For this study, the Cas9 and RFP genes were cloned into the PiggyBac transposon system. PiggyBac-Cas9-RFP and transposase were microinjected into 1436 IVF embryos and 241 blastocysts were formed. Blastocysts with RFP expression accounted for 14.1% of total formed blastocysts. Five blastocysts were selected and transferred into 5 recipient cow (1 embryo per recipient). After gestation periods, 4 transgenic cattle were delivered without any veterinary assistance. From transgenic cattle, ear skin tissue was collected for primary culture. On those primary cells, sgRNA in DNA form for various genes such as PRNP, RB1, and BLG were transfected with 2μg of sgRNA per 5×105 cells using electroporation. As expected, every group of each sgRNA delivered was confirmed to be mutated by T7E1 assay. The data demonstrated that, for the first time, transgenic cattle with Cas9 expression were born, grown up to date (age=5 months) and will be a valuable resource for genome editing in cattle.


Theriogenology | 2016

Developmental competence and cryotolerance of caprine parthenogenetic embryos cultured in chemically defined media.

Woo-Jae Choi; Jihyun Lee; SangHee Lee; Soo-Young Yum; Song-Jeon Lee; Chae-Woong Lim; Goo Jang

Collaboration


Dive into the Soo-Young Yum's collaboration.

Top Co-Authors

Avatar

Goo Jang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Woo-Jae Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changha Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Choongil Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunmin Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyunsook Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

J.H. Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Je-Yoel Cho

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge