Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soochan Bae is active.

Publication


Featured researches published by Soochan Bae.


Scientific Reports | 2013

H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

Dongwon Lee; Soochan Bae; Donghyun Hong; Hyungsuk Lim; Joo Heung Yoon; On Hwang; Seunggyu Park; Qingen Ke; Gilson Khang; Peter M. Kang

The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.


Cardiovascular Research | 2011

Preventing progression of cardiac hypertrophy and development of heart failure by paricalcitol therapy in rats

Soochan Bae; Bhargavi Yalamarti; Qingen Ke; Sangita Choudhury; Hyeon Yu; S. Ananth Karumanchi; Paul E. Kroeger; Ravi Thadhani; Peter M. Kang

AIMS Vitamin D deficiency is associated with cardiac hypertrophy and heart failure, and vitamin D therapy prevents the progression of cardiac hypertrophy in animal models. Here, we examine whether vitamin D therapy prevents progression of pre-existing cardiac hypertrophy and development of heart failure. METHODS AND RESULTS When male Dahl salt-sensitive rats were fed a high salt (HS) diet, all rats developed cardiac hypertrophy after 5 weeks. Thereafter, rats were treated with vehicle (V), paricalcitol (PC, an active vitamin D analogue, at 200 ng, IP 3x/week), enalapril (EP, 90 μg/day), and PC + EP. All groups were continued on the HS diet and evaluated after 4 weeks of therapy. The PC and PC + EP groups, but not the V and EP only groups, showed significant prevention of progression of pre-existing cardiac hypertrophy. The signs of decompensated heart failure were evident in the vehicle-treated group; these heart failure parameters significantly improved with PC, EP or PC + EP therapy. The expression of PKCα, which is regulated by Ca(2+)and known to stimulate cardiac hypertrophy, was significantly increased in the vehicle group, and PC, EP or PC + EP effectively decreased PKCα activation. We also observed normalization of genetic alterations during progression to heart failure with PC treatment. CONCLUSION PC treatment resulted in both the prevention of progression of pre-existing cardiac hypertrophy and the development of heart failure, compared with improvement in progression to heart failure by EP alone. These beneficial findings in heart were associated with inhibition of PKCα activation and reversal of gene alterations.


Journal of Applied Physiology | 2013

Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction

Soochan Bae; Sylvia S. Singh; Hyeon Yu; Ji Yoo Lee; Byung Ryul Cho; Peter M. Kang

Accumulating evidence suggests that vitamin D deficiency plays a crucial role in heart failure. However, whether vitamin D signaling itself plays an important role in cardioprotection is poorly understood. In this study, we examined the mechanism of modulating vitamin D signaling on progression to heart failure after myocardial infarction (MI) in mice. Vitamin D signaling was activated by administration of paricalcitol (PC), an activated vitamin D analog. Wild-type (WT) mice underwent sham or MI surgery and then were treated with either vehicle or PC. Compared with vehicle group, PC attenuated development of heart failure after MI associated with decreases in biomarkers, apoptosis, inflammation, and fibrosis. There was also improvement of cardiac function with PC treatment after MI. Furthermore, vitamin D receptor (VDR) mRNA and protein levels were restored by PC treatment. Next, to explore whether defective vitamin D signaling exhibited deleterious responses after MI, WT and VDR knockout (KO) mice underwent sham or MI surgery and were analyzed 4 wk after MI. VDR KO mice displayed a significant decline in survival rate and cardiac function compared with WT mice after MI. VDR KO mice also demonstrated a significant increase in heart failure biomarkers, apoptosis, inflammation, and fibrosis. Vitamin D signaling promotes cardioprotection after MI through anti-inflammatory, antifibrotic and antiapoptotic mechanisms.


Journal of Controlled Release | 2013

Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia–reperfusion injury

Dongwon Lee; Soochan Bae; Qingen Ke; Jiyoo Lee; Byung-Joo Song; S. Ananth Karumanchi; Gilson Khang; Hak Soo Choi; Peter M. Kang

The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the generation of high level of hydrogen peroxide (H2O2). In this study, we report a novel diagnostic and therapeutic strategy for I/R injury based on H2O2-activatable copolyoxalate nanoparticles using a murine model of hind limb I/R injury. The nanoparticles are composed of hydroxybenzyl alcohol (HBA)-incorporating copolyoxalate (HPOX) that, in the presence of H2O2, degrades completely into three known and safe compounds, cyclohexanedimethanol, HBA and CO2. HPOX effectively scavenges H2O2 in a dose-dependent manner and hydrolyzes to release HBA which exerts intrinsic antioxidant and anti-inflammatory activities both in vitro and in vivo models of hind limb I/R. HPOX nanoparticles loaded with fluorophore effectively and robustly image H2O2 generated in hind limb I/R injury, demonstrating their potential for bioimaging of H2O2-associated diseases. Furthermore, HPOX nanoparticles loaded with anti-apoptotic drug effectively release the drug payload after I/R injury, exhibiting their effectiveness for a targeted drug delivery system for I/R injury. We anticipate that multifunctional HPOX nanoparticles have great potential as H2O2 imaging agents, therapeutics and drug delivery systems for H2O2-associated diseases.


Cardiovascular Research | 2010

Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats

Sangita Choudhury; Soochan Bae; Sheetal R. Kumar; Qingen Ke; Bhargavi Yalamarti; Jun H. Choi; Lorrie A. Kirshenbaum; Peter M. Kang

AIMS The caspases are thought to be central mediators of the apoptotic program, but recent data indicate that apoptosis may also be mediated by caspase-independent mechanisms such as apoptosis-inducing factor (AIF). The role of AIF-induced apoptosis in heart, however, is currently not well understood. The aim of this study was to investigate the presence of and conditions for AIF-induced cardiac apoptosis in vitro. METHODS AND RESULTS Hypertrophic cardiomyocyte (H-CM) cultures were prepared from the hearts of Dahl salt-sensitive rats fed a high salt diet. Apoptotic stimulation induced by hypoxia/reoxygenation or staurosporine (1 microM) enhanced AIF release in H-CMs compared with non-hypertrophic cardiomyocytes (N-CMs). Caspase inhibition using zVAD.fmk (25 microM) or overexpression of CrmA using recombinant adenovirus only partially protected N-CMs from apoptosis (63 +/- 0.93%) and provided no significant protection against apoptosis in hypertrophic cells (23 +/- 1.03%). On the other hand, poly-ADP-ribose polymerase inhibition using 4-AN (20 microM) during apoptotic stimulation blocked the release of AIF from mitochondria and significantly improved cell viability in hypertrophied cardiomyocytes (74 +/- 1.18%). CONCLUSION A caspase-dependent, apoptotic pathway is important for N-CM death, whereas a caspase-independent, AIF-mediated pathway plays a critical role in H-CMs.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Phosphoinositide 3-kinase Akt signaling pathway interacts with protein kinase Cβ2 in the regulation of physiologic developmental hypertrophy and heart function

Debra L. Rigor; Natalya Bodyak; Soochan Bae; Jun H. Choi; Li Zhang; Dmitry Ter-Ovanesyan; Zhiheng He; Julie R. McMullen; Tetsuo Shioi; Seigo Izumo; George L. King; Peter M. Kang

The phosphoinositide 3-kinase (PI3-kinase)-protein kinase B (Akt) signaling pathway is essential in the induction of physiological cardiac hypertrophy. In contrast, protein kinase C beta2 (PKCbeta2) is implicated in the development of pathological cardiac hypertrophy and heart failure. Thus far, no clear association has been demonstrated between these two pathways. In this study, we examined the potential interaction between the PI3-kinase and PKCbeta2 pathways by crossing transgenic mice with cardiac specific expression of PKCbeta2, constitutively active (ca) PI3-kinase, and dominant-negative (dn) PI3-kinase. In caPI3-kinase/PKCbeta2 and dnPI3-kinase/PKCbeta2 double-transgenic mice, the heart weight-to-body weight ratios and cardiomyocyte sizes were similar to those observed in caPI3-kinase and dnPI3-kinase transgenic mice, respectively, suggesting that the regulation of physiological developmental hypertrophy via modulation of cardiomyocyte size proceeds through the PI3-kinase pathway. In addition, we observed that caPI3-kinase/PKCbeta2 mice showed improved cardiac function while the function of dnPI3-kinase/PKCbeta2 mice was similar to that of the PKCbeta2 group. PKCbeta2 protein levels in both dnPI3-kinase/PKCbeta2 and PKCbeta2 mice were significantly upregulated. Interestingly, however, PKCbeta2 protein expression was significantly attenuated in caPI3-kinase/PKCbeta2 mice. PI3-kinase activity measured by Akt phosphorylation was not affected by PKCbeta2 overexpression. These data suggest a potential interaction between these two pathways in the heart, where PI3-kinase is predominantly responsible for the regulation of physiological developmental hypertrophy and may act as an upstream modulator of PKCbeta2 with the potential for rescuing the pathological cardiac dysfunction induced by overexpression of PKCbeta.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA

Soochan Bae; Parco M. Siu; Sangita Choudhury; Qingen Ke; Jun H. Choi; Young YoupKohY.Y. Koh; Peter M. Kang

Although caspase activation is generally thought to be necessary to induce apoptosis, recent evidence suggests that apoptosis can be activated in the setting of caspase inhibition. In this study, we tested the hypothesis that caspase-independent apoptotic pathways contribute to the development of heart failure in the absence of caspase activation. Acute cardiomyopathy was induced using a single dose of doxorubicin (Dox, 20 mg/kg) injected into male wild-type (WT) and transgenic (Tg) mice with a cardiac-specific expression of cytokine response modifier A (CrmA), a known caspase inhibitor. Early (6 day) survival was significantly better in CrmA Tg (81%) than WT (38%) mice. Twelve days after Dox injection, however, the mortality benefit had dissipated, and increased cardiac apoptosis was observed in both groups. There was, however, a significantly greater release of apoptosis-inducing factor (AIF) from mitochondria to cytosol in CrmA Tg compared with WT mice, which suggests that an enhancement of activation in caspase-independent apoptotic pathways had occurred. The administration of a poly(ADP-ribose) polymerase-1 inhibitor, 4-amino-1,8-naphthalimide (4-AN), to Dox-treated mice resulted in significantly improved cardiac function, a significant blockade of AIF released from mitochondria, and decreased cardiac apoptosis. There were also significantly improved survival in WT (18% without 4-AN vs. 89% with 4-AN) and CrmA Tg (13% without 4-AN vs. 93% with 4-AN) mice 12 days after Dox injection. In conclusion, these findings suggest that apoptosis can be induced in the heart lacking caspase activation via caspase-independent pathways and that enabling the inhibition of AIF activation may provide a significant cardiac benefit.


Scientific Reports | 2015

Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury.

Dongwon Lee; Seunggyu Park; Soochan Bae; Dahee Jeong; Minhyung Park; Changsun Kang; Wooyoung Yoo; Mohammed A. Samad; Qingen Ke; Gilson Khang; Peter M. Kang

Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.


Biomaterials | 2015

P-Hydroxybenzyl alcohol-containing biodegradable nanoparticle improves functional blood flow through angiogenesis in a mouse model of hindlimb ischemia

Byung Ryul Cho; Dong Ryeol Ryu; Kwang Soon Lee; Dong Keon Lee; Soochan Bae; Dong Goo Kang; Qingen Ke; Sylvia S. Singh; Kwon-Soo Ha; Young Guen Kwon; Dongwon Lee; Peter M. Kang; Young Myeong Kim

Therapeutic angiogenesis has achieved promising results for ischemic diseases or peripheral artery disease in preclinical and early-phase clinical studies. We examined the therapeutic angiogenic effects of HPOX, which is biodegradable polymer composing the antioxidant p-hydroxybenzyl alcohol (HBA), in a mouse model of hindlimb ischemia. HPOX effectively stimulated blood flow recovery, compared with its degraded compounds HBA and 1,4-cyclohexendimethanol, via promotion of capillary vessel density in the ischemic hindlimb. These effects were highly correlated with levels of angiogenic inducers, vascular endothelial cell growth factor (VEGF), heme oxygenase-1 (HO-1), and Akt/AMPK/endothelial nitric oxide synthase (eNOS) in ischemic mouse hindlimb muscle. Blood perfusion and neovascularization induced by HPOX were reduced in eNOS(-/-) and HO-1(+/-) mice. HPOX also elevated the endothelial cell markers VEGF receptor-2, CD31, and eNOS mRNAs in the ischemic hindlimb, indicating that HPOX increases endothelial cell population and angiogenesis in the ischemic muscle. However, this nanoparticle suppressed expression levels of several inflammatory genes in ischemic tissues. These results suggest that HPOX significantly promotes angiogenesis and blood flow perfusion in the ischemic mouse hindlimb via increased angiogenic inducers, along with suppression of inflammatory gene expression. Thus, HPOX can be used potentially as a noninvasive drug intervention to facilitate therapeutic angiogenesis.


PLOS ONE | 2014

Abnormal Calcium Handling and Exaggerated Cardiac Dysfunction in Mice with Defective Vitamin D Signaling

Sangita Choudhury; Soochan Bae; Qingen Ke; Ji Yoo Lee; Sylvia S. Singh; René St-Arnaud; Federica del Monte; Peter M. Kang

Aim Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction. Methods and Results We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals. Conclusions Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice.

Collaboration


Dive into the Soochan Bae's collaboration.

Top Co-Authors

Avatar

Peter M. Kang

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qingen Ke

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sangita Choudhury

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dongwon Lee

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Ji Yoo Lee

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jun H. Choi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sylvia S. Singh

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hyeon Yu

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Natalya Bodyak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Parco M. Siu

Hong Kong Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge