Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soojin V. Yi is active.

Publication


Featured researches published by Soojin V. Yi.


Nature | 2011

The genome of Tetranychus urticae reveals herbivorous pest adaptations

Miodrag Grbic; Thomas Van Leeuwen; Richard M. Clark; Stephane Rombauts; Pierre Rouzé; Vojislava Grbic; Edward J. Osborne; Wannes Dermauw; Phuong Cao Thi Ngoc; Félix Ortego; Pedro Hernández-Crespo; Isabel Diaz; M. Martinez; Maria Navajas; Elio Sucena; Sara Magalhães; Lisa M. Nagy; Ryan M. Pace; Sergej Djuranovic; Guy Smagghe; Masatoshi Iga; Olivier Christiaens; Jan A. Veenstra; John Ewer; Rodrigo Mancilla Villalobos; Jeffrey L. Hutter; Stephen D. Hudson; Marisela Vélez; Soojin V. Yi; Jia Zeng

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The genome of the fire ant Solenopsis invicta

Yannick Wurm; John L. Wang; Miguel Corona; Sanne Nygaard; Brendan G. Hunt; Krista K. Ingram; Mingkwan Nipitwattanaphon; Dietrich Gotzek; Michiel B. Dijkstra; Jan Oettler; Fabien Comtesse; Cheng-Jen Shih; Wen-Jer Wu; Chin-Cheng Yang; Jérôme Thomas; Emmanuel Beaudoing; Sylvain Pradervand; Volker Flegel; Erin D. Cook; Roberto Fabbretti; Heinz Stockinger; Li Long; William G. Farmerie; Jane Oakey; Jacobus J. Boomsma; Pekka Pamilo; Soojin V. Yi; Jürgen Heinze; Michael A. D. Goodisman; Laurent Farinelli

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Proceedings of the National Academy of Sciences of the United States of America | 2009

DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera

Navin Elango; Brendan G. Hunt; Michael A. D. Goodisman; Soojin V. Yi

The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.


Current Opinion in Genetics & Development | 2002

Male-driven evolution.

Wen-Hsiung Li; Soojin V. Yi; Kateryna D. Makova

The strength of male-driven evolution - that is, the magnitude of the sex ratio of mutation rate - has been a controversial issue, particularly in primates. While earlier studies estimated the male-to-female ratio (alpha) of mutation rate to be about 4-6 in higher primates, two recent studies claimed that alpha is only about 2 in humans. However, a more recent comparison of mutation rates between a noncoding fragment on Y and a homologous region on chromosome 3 gave an estimate of alpha = 5.3, reinstating strong male-driven evolution in hominoids. Several studies investigated variation in mutation rates among genomic regions that may not be related to sex differences and found strong evidence for such variation. The causes for regional variation in mutation rate are not clear but GC content and recombination are two possible causes. Thus, while the strong male-driven evolution in higher primates suggests that errors during DNA replication in the germ cells are the major source of mutation, the contribution of some replication-independent factors such as recombination may also be important.


Insect Molecular Biology | 2011

DNA methylation in insects: on the brink of the epigenomic era.

Karl M. Glastad; Brendan G. Hunt; Soojin V. Yi; Michael A. D. Goodisman

DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage‐specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes.


American Journal of Human Genetics | 2012

Divergent Whole-Genome Methylation Maps of Human and Chimpanzee Brains Reveal Epigenetic Basis of Human Regulatory Evolution

Jia Zeng; Genevieve Konopka; Brendan G. Hunt; Todd M. Preuss; Daniel H. Geschwind; Soojin V. Yi

DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits.


Molecular Biology and Evolution | 2012

The Evolution of Invertebrate Gene Body Methylation

Shrutii Sarda; Jia Zeng; Brendan G. Hunt; Soojin V. Yi

DNA methylation of transcription units (gene bodies) occurs in the genomes of many animal and plant species. Phylogenetic persistence of gene body methylation implies biological significance; yet, the functional roles of gene body methylation remain elusive. In this study, we analyzed methylation levels of orthologs from four distantly related invertebrate species, including the honeybee, silkworm, sea squirt, and sea anemone. We demonstrate that in all four species, gene bodies distinctively cluster to two groups, which correspond to high and low methylation levels. This pattern resembles that of sequence composition arising from the mutagenetic effect of DNA methylation. In spite of this effect, our results show that protein sequences of genes targeted by high levels of methylation are conserved relative to genes lacking methylation. Our investigation identified many genes that either gained or lost methylation during the course of invertebrate evolution. Most of these genes appear to have lost methylation in the insect lineages we investigated, particularly in the honeybee. We found that genes that are methylated in all four invertebrate taxa are enriched for housekeeping functions related to transcription and translation, whereas the loss of DNA methylation occurred in genes whose functions include cellular signaling and reproductive processes. Overall, our study helps to illuminate the functional significance of gene body methylation and its impacts on genome evolution in diverse invertebrate taxa.


Genome Biology | 2008

Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids

Yong-Hwee Eddie Loh; Lee S. Katz; Meryl C Mims; Thomas Kocher; Soojin V. Yi; J. Todd Streelman

BackgroundCichlid fish from East Africa are remarkable for phenotypic and behavioral diversity on a backdrop of genomic similarity. In 2006, the Joint Genome Institute completed low coverage survey sequencing of the genomes of five phenotypically and ecologically diverse Lake Malawi species. We report a computational and comparative analysis of these data that provides insight into the mechanisms that make closely related species different from one another.ResultsWe produced assemblies for the five species ranging in aggregate length from 68 to 79 megabase pairs, identified putative orthologs for more than 12,000 human genes, and predicted more than 32,000 cross-species single nucleotide polymorphisms (SNPs). Nucleotide diversity was lower than that found among laboratory strains of the zebrafish. We collected around 36,000 genotypes to validate a subset of SNPs within and among populations and across multiple individuals of about 75 Lake Malawi species. Notably, there were no fixed differences observed between focal species nor between major lineages. Roughly 3% to 5% of loci surveyed are statistical outliers for genetic differentiation (FST) within species, between species, and between major lineages. Outliers for FST are candidate genes that may have experienced a history of natural selection in the Malawi lineage.ConclusionWe present a novel genome sequencing strategy, which is useful when evolutionary diversity is the question of interest. Lake Malawi cichlids are phenotypically and behaviorally diverse, but they appear genetically like a subdivided population. The unique structure of Lake Malawl cichlid genomes should facilitate conceptually new experiments, employing SNPs to identity genotype-phenotype association, using the entire species flock as a mapping panel.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Relaxed selection is a precursor to the evolution of phenotypic plasticity

Brendan G. Hunt; Lino Ometto; Yannick Wurm; DeWayne Shoemaker; Soojin V. Yi; Laurent Keller; Michael A. D. Goodisman

Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Variable molecular clocks in hominoids

Navin Elango; James W. Thomas; Soojin V. Yi

Generation time is an important determinant of a neutral molecular clock. There are several human-specific life history traits that led to a substantially longer generation time in humans than in other hominoids. Indeed, a long generation time is considered an important trait that distinguishes humans from their closest relatives. Therefore, humans may exhibit a significantly slower molecular clock as compared to other hominoids. To investigate this hypothesis, we performed a large-scale analysis of lineage-specific rates of single-nucleotide substitutions among hominoids. We found that humans indeed exhibit a significant slowdown of molecular evolution compared to chimpanzees and other hominoids. However, the amount of fixed differences between humans and chimpanzees appears extremely small, suggesting a very recent evolution of human-specific life history traits. Notably, chimpanzees also exhibit a slower rate of molecular evolution compared to gorillas and orangutans in the regions analyzed.

Collaboration


Dive into the Soojin V. Yi's collaboration.

Top Co-Authors

Avatar

Brendan G. Hunt

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael A. D. Goodisman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jia Zeng

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Navin Elango

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Taesung Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ke Xu

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Iksoo Huh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Karl M. Glastad

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Seongho Kim

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge