Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soonyoung Cha is active.

Publication


Featured researches published by Soonyoung Cha.


Nature Communications | 2015

Flexible transition metal dichalcogenide nanosheets for band-selective photodetection.

Dhinesh Babu Velusamy; Richard Hahnkee Kim; Soonyoung Cha; June Huh; Reza Khazaeinezhad; Sahar Hosseinzadeh Kassani; Giyoung Song; Suk Man Cho; Sung Hwan Cho; Ihn Hwang; Jinseong Lee; Kyunghwan Oh; Hyunyoug Choi; Cheol-Min Park

The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers. The universal interaction between amine and transition metal resulted in scalable, stable and high concentration dispersions of a single to a few layers of numerous transition metal dichalcogenides. Our MoSe2 and MoS2 composites are highly photoconductive even at bending radii as low as 200 μm on illumination of near infrared and visible light, respectively. More interestingly, simple solution mixing of MoSe2 and MoS2 gives rise to blended composite films in which the photodetection properties were controllable. The MoS2/MoSe2 (5:5) film showed broad range photodetection suitable for both visible and near infrared spectra.


Advanced Materials | 2015

Rotation‐Misfit‐Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition‐Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls

Hoseok Heo; Ji Ho Sung; Gangtae Jin; Ji-Hoon Ahn; Kyungwook Kim; M. J. Lee; Soonyoung Cha; Hyunyong Choi; Moon-Ho Jo

2D vertical stacking and lateral stitching growth of monolayer (ML) hexagonal transition-metal dichalcogenides are reported. The 2D heteroepitaxial manipulation of MoS2 and WS2 MLs is achieved by control of the 2D nucleation kinetics during the sequential vapor-phase growth. It enables the creation of hexagon-on-hexagon unit-cell stacking and hexagon-by-hexagon stitching without interlayer rotation misfits.


Nature Communications | 2015

Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

Hoseok Heo; Ji Ho Sung; Soonyoung Cha; Bo Gyu Jang; Joo Youn Kim; Gangtae Jin; Donghun Lee; Ji-Hoon Ahn; M. J. Lee; Ji Hoon Shim; Hyunyong Choi; Moon-Ho Jo

Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.


Nature Communications | 2016

Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers

Woo Jong Yu; Quoc An Vu; Hyemin Oh; Hong Gi Nam; Hailong Zhou; Soonyoung Cha; Joo Youn Kim; Alexandra Carvalho; Mun Seok Jeong; Hyunyong Choi; A. H. Castro Neto; Young Hee Lee; Xiangfeng Duan

Two-dimensional layered transition-metal dichalcogenides have attracted considerable interest for their unique layer-number-dependent properties. In particular, vertical integration of these two-dimensional crystals to form van der Waals heterostructures can open up a new dimension for the design of functional electronic and optoelectronic devices. Here we report the layer-number-dependent photocurrent generation in graphene/MoS2/graphene heterostructures by creating a device with two distinct regions containing one-layer and seven-layer MoS2 to exclude other extrinsic factors. Photoresponse studies reveal that photoresponsivity in one-layer MoS2 is surprisingly higher than that in seven-layer MoS2 by seven times. Spectral-dependent studies further show that the internal quantum efficiency in one-layer MoS2 can reach a maximum of 65%, far higher than the 7% in seven-layer MoS2. Our theoretical modelling shows that asymmetric potential barriers in the top and bottom interfaces of the graphene/one-layer MoS2/graphene heterojunction enable asymmetric carrier tunnelling, to generate usually high photoresponsivity in one-layer MoS2 device.


ACS Nano | 2016

Solvent-Assisted Gel Printing for Micropatterning Thin Organic–Inorganic Hybrid Perovskite Films

Beomjin Jeong; Ihn Hwang; Sung Hwan Cho; Eui Hyuk Kim; Soonyoung Cha; Jinseong Lee; Han Sol Kang; Suk Man Cho; Hyunyong Choi; Cheol-Min Park

While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.


Nature Communications | 2015

Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons.

Sangwan Sim; Houk Jang; Nikesh Koirala; Matthew Brahlek; Jisoo Moon; Ji Ho Sung; Jun Park; Soonyoung Cha; Seongshik Oh; Moon-Ho Jo; Jong Hyun Ahn; Hyunyong Choi

Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.


Nature Communications | 2016

Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2.

Sangwan Sim; Doeon Lee; Minji Noh; Soonyoung Cha; Chan Ho Soh; Ji Ho Sung; Moon-Ho Jo; Hyunyong Choi

The optical Stark effect is a coherent light–matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states.


Scientific Reports | 2013

Ultrafast zero balance of the oscillator-strength sum rule in graphene.

Jaeseok Kim; Seong Chu Lim; Seung Jin Chae; Inhee Maeng; Younghwan Choi; Soonyoung Cha; Young Hee Lee; Hyunyong Choi

Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule in a nonequilibrium regime has been a long-standing unexplored question. The simple band structure of graphene is an ideal system for investigating this question due to the linear Dirac-like energy dispersion. Here, we employed both ultrafast terahertz and optical spectroscopy to directly monitor the transient oscillator-strength balancing between quasi-free low-energy oscillators and high-energy Fermi-edge ones. Upon photo-excitation of hot Dirac fermions, we observed that the ultrafast depletion of high-energy oscillators precisely complements the increased terahertz absorption oscillators. Our results may provide an experimental priori to understand, for example, the intrinsic free-carrier dynamics to the high-energy photo-excitation, responsible for optoelectronic operation such as graphene-based phototransistor or solar-energy harvesting devices.


Diabetes & Metabolism | 2017

A prospective study of leucocyte mitochondrial DNA content and deletion in association with the metabolic syndrome

Jang-Young Kim; Jung Ran Choi; In Hae Park; Ji Hye Huh; J.-W. Son; Ki Woo Kim; Kyu Sang Park; Soonyoung Cha; Joo Hyuk Sohn; D.-H. Jung; Sang-Baek Koh

Diabetes & Metabolism - In Press.Proof corrected by the author Available online since mercredi 2 novembre 2016


Nature Communications | 2018

Ultrafast quantum beats of anisotropic excitons in atomically thin ReS 2

Sangwan Sim; Doeon Lee; Artur V. Trifonov; Taeyoung Kim; Soonyoung Cha; Ji Ho Sung; Sungjun Cho; Wooyoung Shim; Moon-Ho Jo; Hyunyong Choi

Quantum beats, periodic oscillations arising from coherent superposition states, have enabled exploration of novel coherent phenomena. Originating from strong Coulomb interactions and reduced dielectric screening, two-dimensional transition metal dichalcogenides exhibit strongly bound excitons either in a single structure or hetero-counterpart; however, quantum coherence between excitons is barely known to date. Here we observe exciton quantum beats in atomically thin ReS2 and further modulate the intensity of the quantum beats signal. Surprisingly, linearly polarized excitons behave like a coherently coupled three-level system exhibiting quantum beats, even though they exhibit anisotropic exciton orientations and optical selection rules. Theoretical studies are also provided to clarify that the observed quantum beats originate from pure quantum coherence, not from classical interference. Furthermore, we modulate on/off quantum beats only by laser polarization. This work provides an ideal laboratory toward polarization-controlled exciton quantum beats in two-dimensional materials.Quantum beats are periodic oscillations originating from the superposition of coherent quantum states. Here, the authors observe exciton quantum beats in the optical spectrum of atomically thin ReS2, and modulate the intensity of the quantum beat signal by means of light polarisation.

Collaboration


Dive into the Soonyoung Cha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moon-Ho Jo

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ji Ho Sung

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge