Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soosung Kang is active.

Publication


Featured researches published by Soosung Kang.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural and biological studies on bacterial nitric oxide synthase inhibitors

Jeffrey K. Holden; Huiying Li; Qing Jing; Soosung Kang; Jerry Richo; Richard B. Silverman; Thomas L. Poulos

Significance Nitric oxide (NO) produced by bacterial nitric oxide synthase has recently been shown to protect the Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus from antibiotics and oxidative stress. Using Bacillus subtilis as a model system, we identified two NOS inhibitors that work in conjunction with an antibiotic to kill B. subtilis. Moreover, comparison of inhibitor-bound crystal structures between the bacterial NOS and mammalian NOS revealed an unprecedented mode of binding to the bacterial NOS that can be further exploited for future structure-based drug design. Overall, this work is an important advance in developing inhibitors against gram-positive pathogens. Nitric oxide (NO) produced by bacterial NOS functions as a cytoprotective agent against oxidative stress in Staphylococcus aureus, Bacillus anthracis, and Bacillus subtilis. The screening of several NOS-selective inhibitors uncovered two inhibitors with potential antimicrobial properties. These two compounds impede the growth of B. subtilis under oxidative stress, and crystal structures show that each compound exhibits a unique binding mode. Both compounds serve as excellent leads for the future development of antimicrobials against bacterial NOS-containing bacteria.


Bioorganic & Medicinal Chemistry | 2010

Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2

Che Chien Chang; Song Cao; Soosung Kang; Li Kai; Xinyong Tian; Prativa Pandey; Sara Fernandez Dunne; Chi Hao Luan; D. James Surmeier; Richard B. Silverman

L-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit. Recently, it was shown that Ca(V)1.3 Ca(2+) channels underlie autonomous pacemaking in adult dopaminergic neurons in the substantia nigra pars compacta, and this reliance renders them sensitive to toxins used to create animal models of Parkinsons disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca(2+) and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective Ca(V)1.3 channel antagonists are required. In an attempt to identify potent and selective antagonists of Ca(V)1.3 channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed Ca(V)1.2 and Ca(V)1.3 channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most Ca(V)1.3 selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both Ca(V)1.2 and Ca(V)1.3 channels and suggests that other classes of compounds need to be identified for Ca(V)1.3 selectivity.


Brain | 2015

Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease

Andreia Teixeira-Castro; Ana Jalles; Sofia Esteves; Soosung Kang; Liliana da Silva Santos; Anabela Silva-Fernandes; Mário F. Neto; Renée M. Brielmann; Carlos Bessa; Sara Duarte-Silva; Adriana Miranda; Stéphanie Oliveira; Andreia Neves-Carvalho; João Bessa; Teresa Summavielle; Richard B. Silverman; Pedro Oliveira; Richard I. Morimoto; Patrícia Maciel

Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.


Scientific Reports | 2016

Regulation of aldosterone secretion by Cav1.3.

Catherine B. Xie; Lalarukh Haris Shaikh; Sumedha Garg; Gizem Tanriver; Ada E.D. Teo; Junhua Zhou; Carmela Maniero; Wanfeng Zhao; Soosung Kang; Richard B. Silverman; Elena Azizan; Morris J. Brown

Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.


Journal of Medicinal Chemistry | 2013

Structure-Activity Relationship of N,N′-Disubstituted Pyrimidinetriones as CaV1.3 Calcium Channel-Selective Antagonists for Parkinson’s Disease

Soosung Kang; Garry Cooper; Sara Fernandez Dunne; Chi Hao Luan; D. James Surmeier; Richard B. Silverman

CaV1.3 L-type calcium channels (LTCCs) have been a potential target for Parkinsons disease since calcium ion influx through the channel was implicated in the generation of mitochondrial oxidative stress, causing cell death in the dopaminergic neurons. Selective inhibition of CaV1.3 over other LTCC isoforms, especially CaV1.2, is critical to minimize potential side effects. We recently identified pyrimidinetriones (PYTs) as a CaV1.3-selective scaffold; here we report the structure-activity relationship of PYTs with both CaV1.3 and CaV1.2 LTCCs. By variation of the substituents on the cyclopentyl and arylalkyl groups of PYT, SAR studies allowed characterization of the CaV1.3 and CaV1.2 LTCCs binding sites. The SAR also identified four important moieties that either retain selectivity or enhance binding affinity. Our study represents a significant enhancement of the SAR of PYTs at CaV1.3 and CaV1.2 LTCCs and highlights several advances in the lead optimization and diversification of this family of compounds for drug development.


Journal of Medicinal Chemistry | 2015

Structure-based design of bacterial nitric oxide synthase inhibitors

Jeffrey K. Holden; Soosung Kang; Scott A. Hollingsworth; Huiying Li; Nathan M. Lim; Steven L. Chen; He Huang; Fengtian Xue; Wei Tang; Richard B. Silverman; Thomas L. Poulos

Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial (Holden, , Proc. Natl. Acad. Sci. U.S.A.2013, 110, 1812724145412). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.


Biochemistry | 2014

The mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in nitric oxide synthases.

Huiying Li; Joumana Jamal; Silvia L. Delker; Carla Plaza; Haitao Ji; Qing Jing; He Huang; Soosung Kang; Richard B. Silverman; Thomas L. Poulos

Many pyrrolidine-based inhibitors highly selective for neuronal nitric oxide synthase (nNOS) over endothelial NOS (eNOS) exhibit dramatically different binding modes. In some cases, the inhibitor binds in a 180° flipped orientation in nNOS relative to eNOS. From the several crystal structures we have determined, we know that isoform selectivity correlates with the rotamer position of a conserved tyrosine residue that H-bonds with a heme propionate. In nNOS, this Tyr more readily adopts the out-rotamer conformation, while in eNOS, the Tyr tends to remain fixed in the original in-rotamer conformation. In the out-rotamer conformation, inhibitors are able to form better H-bonds with the protein and heme, thus increasing inhibitor potency. A segment of polypeptide that runs along the surface near the conserved Tyr has long been thought to be the reason for the difference in Tyr mobility. Although this segment is usually disordered in both eNOS and nNOS, sequence comparisons and modeling from a few structures show that this segment is structured quite differently in eNOS and nNOS. In this study, we have probed the importance of this surface segment near the Tyr by making a few mutants in the region followed by crystal structure determinations. In addition, because the segment near the conserved Tyr is highly ordered in iNOS, we also determined the structure of an iNOS–inhibitor complex. This new structure provides further insight into the critical role that mobility plays in isoform selectivity.


Bioorganic & Medicinal Chemistry | 2013

Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyridine mimics.

Soosung Kang; Garry Cooper; Sara Fernandez Dunne; Chi Hao Luan; D. James Surmeier; Richard B. Silverman

The L-type calcium channel (LTCC) CaV1.3 is regarded as a new potential therapeutic target for Parkinsons disease. Calcium influx through CaV1.3 LTCC during autonomous pacemaking in adult dopaminergic neurons of the substantia nigra pars compacta is related to the generation of mitochondrial oxidative stress in animal models. Development of a CaV1.3 antagonist selective over CaV1.2 is essential because CaV1.2 pore-forming subunits are the predominant form of LTCCs and are abundant in the central nervous and cardiovascular systems. We have explored 1,4-dihydropyrimidines and 4H-pyrans to identify potent and selective antagonists of CaV1.3 relative to CaV1.2 LTCCs. A library of 36 dihydropyridine (DHP)-mimic 1,4-dihydropyrimidines and 4H-pyrans was synthesized, and promising chiral compounds were resolved. The antagonism studies of CaV1.3 and CaV1.2 LTCCs using DHP mimic compounds showed that dihydropyrimidines and 4H-pyrans are effective antagonists of DHPs for CaV1.3 LTCCs. Some 1,4-dihydropyrimidines are more selective than isradipine for CaV1.3 over CaV1.2, shown here by both calcium flux and patch-clamp electrophysiology experiments, where the ratio of antagonism is around 2-3. These results support the hypothesis that the modified hydrogen bonding donor/acceptors in DHP-mimic dihydropyrimidines and 4H-pyrans can interact differently with DHP binding sites, but, in addition, the data suggest that the binding sites of DHP in CaV1.3 and CaV1.2 LTCCs are very similar.


Journal of Medicinal Chemistry | 2014

Nitric oxide synthase inhibitors that interact with both heme propionate and tetrahydrobiopterin show high isoform selectivity

Soosung Kang; Wei Tang; Huiying Li; Georges Chreifi; Pavel Martásek; Linda J. Roman; Thomas L. Poulos; Richard B. Silverman

Overproduction of NO by nNOS is implicated in the pathogenesis of diverse neuronal disorders. Since NO signaling is involved in diverse physiological functions, selective inhibition of nNOS over other isoforms is essential to minimize side effects. A series of α-amino functionalized aminopyridine derivatives (3–8) were designed to probe the structure–activity relationship between ligand, heme propionate, and H4B. Compound 8R was identified as the most potent and selective molecule of this study, exhibiting a Ki of 24 nM for nNOS, with 273-fold and 2822-fold selectivity against iNOS and eNOS, respectively. Although crystal structures of 8R complexed with nNOS and eNOS revealed a similar binding mode, the selectivity stems from the distinct electrostatic environments in two isoforms that result in much lower inhibitor binding free energy in nNOS than in eNOS. These findings provide a basis for further development of simple, but even more selective and potent, nNOS inhibitors.


Journal of Medicinal Chemistry | 2015

2-Aminopyridines with a Truncated Side Chain to Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity.

Soosung Kang; Huiying Li; Wei Tang; Pavel Martásek; Linda J. Roman; Thomas L. Poulos; Richard B. Silverman

We have analyzed a recently obtained crystal structure of human neuronal nitric oxide synthase (nNOS) and then designed and synthesized several 2-aminopyridine derivatives containing a truncated side chain to avoid the hydrophobic pocket that differentiates human and rat nNOS in an attempt to explore alternative binding poses along the substrate access channel of human nNOS. Introduction of an N-methylethane-1,2-diamine side chain and conformational constraints such as benzonitrile and pyridine as the middle aromatic linker were sufficient to increase human and rat nNOS binding affinity and inducible and endothelial NOS selectivity. We found that 14b is a potent inhibitor; the binding modes with human and rat nNOS are unexpected, inducing side chain rotamer changes in Gln478 (rat) at the top of the active site. Compound 19c exhibits Ki values of 24 and 55 nM for rat and human nNOS, respectively, with 153-fold iNOS and 1040-fold eNOS selectivity. 19c has 18% oral bioavailability.

Collaboration


Dive into the Soosung Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiying Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Jing

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

He Huang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Linda J. Roman

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Hao Luan

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge