Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sooyeon Hwang is active.

Publication


Featured researches published by Sooyeon Hwang.


Journal of the American Chemical Society | 2017

Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

Hanguang Zhang; Sooyeon Hwang; Maoyu Wang; Zhenxing Feng; Stavros Karakalos; Langli Luo; Zhi Qiao; Xiaohong Xie; Chongmin Wang; Dong Su; Yuyan Shao; Gang Wu

It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe-N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10u202f000 potential cycles (0.6-1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.


ACS Applied Materials & Interfaces | 2013

p‑Channel Oxide Thin Film Transistors Using Solution-Processed Copper Oxide

Sang Yun Kim; Cheol Hyoun Ahn; Ju Ho Lee; Yong Hun Kwon; Sooyeon Hwang; Jeong Yong Lee; Hyung Koun Cho

Cu2O thin films were synthesized on Si (100) substrate with thermally grown 200-nm SiO2 by sol-gel spin coating method and postannealing under different oxygen partial pressure (0.04, 0.2, and 0.9 Torr). The morphology of Cu2O thin films was improved through N2 postannealing before O2 annealing. Under relatively high oxygen partial pressure of 0.9 Torr, the roughness of synthesized films was increased with the formation of CuO phase. Bottom-gated copper oxide (CuxO) thin film transistors (TFTs) were fabricated via conventional photolithography, and the electrical properties of the fabricated TFTs were measured. The resulting Cu2O TFTs exhibited p-channel operation, and field effect mobility of 0.16 cm2/(V s) and on-to-off drain current ratio of ∼1×10(2) were observed in the TFT device annealed at PO2 of 0.04 Torr. This study presented the potential of the solution-based process of the Cu2O TFT with p-channel characteristics for the first time.


Advanced Materials | 2018

Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

Xiao Xia Wang; David A. Cullen; Yung-Tin Pan; Sooyeon Hwang; Maoyu Wang; Zhenxing Feng; Jingyun Wang; Mark H. Engelhard; Hanguang Zhang; Yanghua He; Yuyan Shao; Dong Su; Karren L. More; Jacob S. Spendelow; Gang Wu

Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.


ACS Nano | 2016

Kinetic Phase Evolution of Spinel Cobalt Oxide during Lithiation

Jing Li; Kai He; Qingping Meng; Xin Li; Yizhou Zhu; Sooyeon Hwang; Ke Sun; Hong Gan; Yimei Zhu; Yifei Mo; Eric A. Stach; Dong Su

Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalation reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. This work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.


Energy and Environmental Science | 2018

Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction

Kun Jiang; Samira Siahrostami; Tingting Zheng; Yongfeng Hu; Sooyeon Hwang; Eli Stavitski; Yande Peng; James J. Dynes; Mehash Gangisetty; Dong Su; Klaus Attenkofer; Haotian Wang

Single-atom catalysts have emerged as an exciting paradigm with intriguing properties different from their nanocrystal counterparts. Here we report Ni single atoms dispersed into graphene nanosheets, without Ni nanoparticles involved, as active sites for the electrocatalytic CO2 reduction reaction (CO2RR) to CO. While Ni metal catalyzes the hydrogen evolution reaction (HER) exclusively under CO2RR conditions, Ni single atomic sites present a high CO selectivity of 95% under an overpotential of 550 mV in water, and an excellent stability over 20 hours’ continuous electrolysis. The current density can be scaled up to more than 50 mA cm−2 with a CO evolution turnover frequency of 2.1 × 105 h−1 while maintaining 97% CO selectivity using an anion membrane electrode assembly. Different Ni sites in graphene vacancies, with or without neighboring N coordination, were identified by in situ X-ray absorption spectroscopy and density functional theory calculations. Theoretical analysis of Ni and Co sites suggests completely different reaction pathways towards the CO2RR or HER, in agreement with experimental observations.


Nano Letters | 2017

Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes

Kai He; Zhenpeng Yao; Sooyeon Hwang; Na Li; Ke Sun; Hong Gan; Yaping Du; Hua Zhang; C. Wolverton; Dong Su

Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van der Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.


Journal of Materials Chemistry | 2017

Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries

Kassiopeia Smith; Andreas Savva; Changjian Deng; Janelle Wharry; Sooyeon Hwang; Dong Su; Yongqiang Wang; Jue Gong; Tao Xu; Darryl P. Butt; Hui Xiong

The effects of proton irradiation on nanostructured metal oxides have been investigated. Recent studies suggest that the presence of structural defects (e.g. vacancies and interstitials) in metal oxides may enhance the materials electrochemical charge storage capacity. A new approach to introduce defects in electrode materials is to use ion irradiation as it can produce a supersaturation of point defects in the target material. In this work we report the effect of low-energy proton irradiation on amorphous TiO2 nanotube electrodes at both room temperature and high temperature (250 °C). Upon room temperature irradiation the nanotubes demonstrate an irradiation-induced phase transformation to a mixture of amorphous, anatase, and rutile domains while showing a 35% reduction in capacity compared to anatase TiO2. On the other hand, the high temperature proton irradiation induced a disordered rutile phase within the nanotubes as characterized by Raman spectroscopy and transmission electron microscopy, which displays an improved capacity by 20% at ∼240 mA h g−1 as well as improved rate capability compared to an unirradiated anatase sample. Voltammetric sweep data were used to determine the contributions from diffusion-limited intercalation and capacitive processes and it was found that the electrodes after irradiation had more contributions from diffusion in lithium charge storage. Our work suggests that tailoring the defect generation through ion irradiation within metal oxide electrodes could present a new avenue for designing advanced electrode materials.


ACS Applied Materials & Interfaces | 2017

Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

Surya V. Devaguptapu; Sooyeon Hwang; Stavros Karakalos; Shuai Zhao; Shiva Gupta; Dong Su; Hui Xu; Gang Wu

Spinel NiCo2O4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo2O4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO2 hard templates, respectively, via hydrothermal methods followed by calcination. Whereas the hard-template yields spherelike dense structures, soft-template assists the formation of a unique nanoneedle cluster assembly containing abundant meso- and macropores. Furthermore, the effect of morphology of NiCo2O4 on their corresponding bifunctional catalytic performance was systematically investigated. The flowerlike nanoneedle assembly NiCo2O4 catalyst via the soft-template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V versus reversible hydrogen electrode, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo2O4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm2 at 1.6 V, showing no activity loss after 20u2009000 potential cycles (0-1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust three-dimensional architecture with increased surface areas and enhanced mass transfer. Importantly, the soft template can yield a high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co, thus promoting structural integrity with enhanced electrical conductivity and catalytic properties.


Nature Communications | 2018

Elucidating anionic oxygen activity in lithium-rich layered oxides

Jing Xu; Meiling Sun; Ruimin Qiao; Sara E. Renfrew; Lu Ma; Tianpin Wu; Sooyeon Hwang; Dennis Nordlund; Dong Su; Khalil Amine; Jun Lu; Bryan D. McCloskey; Wanli Yang; Wei Tong

Recent research has explored combining conventional transition-metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. Here, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess a similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely different oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.A reversible oxygen redox process contributes extra capacity and understanding this behavior is of high importance. Here, aided by resonant inelastic X-ray scattering, the authors reveal the distinctive anionic oxygen activity of battery electrodes with different transition metals.


Nano Letters | 2018

Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

Xiao Xia Wang; Sooyeon Hwang; Yung-Tin Pan; kate Chen; Yanghua He; Stavros Karakalos; Hanguang Zhang; Jacob S. Spendelow; Dong Su; Gang Wu

Highly ordered Pt alloy structures are proven effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic-framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt3Co structures. It is very crucial for the formation of the ordered Pt3Co to carefully control the doping content of Co into the MOFs and the heating temperatures for Co diffusion. The optimal Pt3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs reversible hydrogen electrode (RHE) and only losing 12 mV after 30u202f000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests made evident by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt3Co intermetallic catalysts. The new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen and transition metal dopings.

Collaboration


Dive into the Sooyeon Hwang's collaboration.

Top Co-Authors

Avatar

Gang Wu

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Hanguang Zhang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Stavros Karakalos

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hui Xu

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mengjie Chen

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Yanghua He

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

David A. Cullen

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Guofeng Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hong Gan

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai He

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge