Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Charlotte Gleber is active.

Publication


Featured researches published by Sophie Charlotte Gleber.


Nature Chemistry | 2015

Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

Emily L. Que; Reiner Bleher; Francesca E. Duncan; Betty Y. Kong; Sophie Charlotte Gleber; Stefan Vogt; Si Chen; Seth A. Garwin; Amanda R. Bayer; Vinayak P. Dravid; Teresa K. Woodruff; Thomas V. O'Halloran

Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.


ACS Nano | 2013

Epidermal Growth Factor Receptor Targeted Nuclear Delivery and High Resolution Whole Cell X-Ray Imaging of Fe3O4@TiO2 Nanoparticles in Cancer Cells

Ye Yuan; Si Chen; Tatjana Paunesku; Sophie Charlotte Gleber; William Liu; Caroline Doty; Rachel Mak; Junjing Deng; Qiaoling Jin; Barry Lai; Keith E. Brister; Claus Flachenecker; Chris Jacobsen; Stefan Vogt; Gayle E. Woloschak

Sequestration within the cytoplasm often limits the efficacy of therapeutic nanoparticles that have specific subcellular targets. To allow for both cellular and subcellular nanoparticle delivery, we have created epidermal growth factor receptor (EGFR)-targeted Fe3O4@TiO2 nanoparticles that use the native intracellular trafficking of EGFR to improve internalization and nuclear translocation in EGFR-expressing HeLa cells. While bound to EGFR, these nanoparticles do not interfere with the interaction between EGFR and karyopherin-β, a protein that is critical for the translocation of ligand-bound EGFR to the nucleus. Thus, a portion of the EGFR-targeted nanoparticles taken up by the cells also reaches cell nuclei. We were able to track nanoparticle accumulation in cells by flow cytometry and nanoparticle subcellular distribution by confocal fluorescent microscopy indirectly, using fluorescently labeled nanoparticles. More importantly, we imaged and quantified intracellular nanoparticles directly, by their elemental signatures, using X-ray fluorescence microscopy at the Bionanoprobe, the first instrument of its kind in the world. The Bionanoprobe can focus hard X-rays down to a 30 nm spot size to map the positions of chemical elements tomographically within whole frozen-hydrated cells. Finally, we show that photoactivation of targeted nanoparticles in cell nuclei, dependent on successful EGFR nuclear accumulation, induces significantly more double-stranded DNA breaks than photoactivation of nanoparticles that remain exclusively in the cytoplasm.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain

Helena Öhrvik; Yasuhiro Nose; L. Kent Wood; Byung-Eun Kim; Sophie Charlotte Gleber; Martina Ralle; Dennis J. Thiele

Significance Copper is essential for normal growth and development because it serves roles in catalysis, signaling, and structure. Cells acquire copper through the copper transporter 1 (Ctr1) protein, a copper transporter that localizes to the cell membrane and intracellular vesicles. Both copper and the anticancer drug cisplatin are imported by Ctr1 by virtue of an extracellular domain rich in metal-binding amino acids. In this report we demonstrate that a protein structurally related to Ctr1, called Ctr2, plays a role in the generation or stability of a truncated form of Ctr1 lacking a large portion of the extracellular domain. Retention of this domain in mice or cells lacking Ctr2 enhances copper and cisplatin uptake, thereby establishing Ctr2 as a regulator of Ctr1 function. Copper is an essential catalytic cofactor for enzymatic activities that drive a range of metabolic biochemistry including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Copper dysregulation is associated with fatal infantile disease, liver, and cardiac dysfunction, neuropathy, and anemia. Here we report that mammals regulate systemic copper acquisition and intracellular mobilization via cleavage of the copper-binding ecto-domain of the copper transporter 1 (Ctr1). Although full-length Ctr1 is critical to drive efficient copper import across the plasma membrane, cleavage of the ecto-domain is required for Ctr1 to mobilize endosomal copper stores. The biogenesis of the truncated form of Ctr1 requires the structurally related, previously enigmatic copper transporter 2 (Ctr2). Ctr2−/− mice are defective in accumulation of truncated Ctr1 and exhibit increased tissue copper levels, and X-ray fluorescence microscopy demonstrates that copper accumulates as intracellular foci. These studies identify a key regulatory mechanism for mammalian copper transport through Ctr2-dependent accumulation of a Ctr1 variant lacking the copper- and cisplatin-binding ecto-domain.


Ultramicroscopy | 2015

Optimizing detector geometry for trace element mapping by X-ray fluorescence

Yue Sun; Sophie Charlotte Gleber; Chris Jacobsen; Janos Kirz; Stefan Vogt

Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.


Optics Express | 2014

Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

Sophie Charlotte Gleber; Michael J. Wojcik; Jie Liu; Chris Roehrig; Marvin Cummings; Joan Vila-Comamala; Kenan Li; Barry Lai; Deming Shu; Stefan Vogt

Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV.


Journal of Microscopy | 2017

Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy

Qiaoling Jin; Tatjana Paunesku; Barry Lai; Sophie Charlotte Gleber; Si Chen; Lydia Finney; David J. Vine; Stefan Vogt; Gayle E. Woloschak; Chris Jacobsen

Trace metals play important roles in biological function, and x‐ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side‐by‐side comparison shows that plunge‐freezing‐based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x‐ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.


PLOS ONE | 2015

Ultraviolet Germicidal Irradiation and Its Effects on Elemental Distributions in Mouse Embryonic Fibroblast Cells in X-Ray Fluorescence Microanalysis

Qiaoling Jin; Stefan Vogt; Barry Lai; Si Chen; Lydia Finney; Sophie Charlotte Gleber; Jesse Ward; Junjing Deng; Rachel Mak; Nena Moonier; Chris Jacobsen

Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologically important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.


Journal of Synchrotron Radiation | 2014

Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast

Young Pyo Hong; Sophie Charlotte Gleber; Thomas V. O'Halloran; Emily L. Que; Reiner Bleher; Stefan Vogt; Teresa K. Woodruff; Chris Jacobsen

X-ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross-correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross-correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced-dose, more rapidly acquired, fluorescence nanotomography experiments.


Scientific Reports | 2017

Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

Grant T. Kirker; Sam Zelinka; Sophie Charlotte Gleber; David J. Vine; Lydia Finney; Si Chen; Young Pyo Hong; Omar Uyarte; Stefan Vogt; Jody Jellison; Barry Goodell; Joseph E. Jakes

The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell walls and fungal hyphae during decay is not known. Here we employ synchrotron-based X-ray fluorescence microscopy (XFM) to map and quantify physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn, in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood, fungal hyphae with the dried extracellular matrix (ECM) from the fungus, and Ca oxalate crystals. Three-dimensional ion volume reconstructions were also acquired of wood cell walls and hyphae with ECM. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cell wall length scales. These measurements provide new insights into the movement of ions during decay and illustrate how synchrotron-based XFM is uniquely suited study these ions.


Proceedings of SPIE | 2013

A next-generation in-situ nanoprobe beamline for the Advanced Photon Source

J. Maser; Barry Lai; Tonio Buonassisi; Zhonghou Cai; Si Chen; Lydia Finney; Sophie Charlotte Gleber; Ross Harder; Chris Jacobsen; Wenjun Liu; Conal E. Murray; Curt Preissner; Chris Roehrig; Volker Rose; Deming Shu; David J. Vine; Stefan Vogt

The Advanced Photon Source is currently developing a suite of new hard x-ray beamlines, aimed primarily at the study of materials and devices under real conditions. One of the flagship beamlines of the APS Upgrade is the In-Situ Nanoprobe beamline (ISN beamline), which will provide in-situ and operando characterization of advanced energy materials and devices under change of temperature and gases, under applied fields, in 3D. The ISN beamline is designed to deliver spatially coherent x-rays with photon energies between 4 keV and 30 keV to the ISN instrument. As an x-ray source, a revolver-type undulator with two interchangeable magnetic structures, optimized to provide high brilliance throughout the range of photon energies of 4 keV – 30 keV, will be used. The ISN instrument will provide a smallest hard x-ray spot of 20 nm using diffractive optics, with sensitivity to sub-10 nm sample structures using coherent diffraction. Using nanofocusing mirrors in Kirkpatrick-Baez geometry, the ISN will also provide a focus of 50 nm with a flux of 8·1011 Photons/s at a photon energy of 10 keV, several orders of magnitude larger than what is currently available. This will allow imaging of trace amounts of most elements in the periodic table, with a sensitivity to well below 100 atoms for most metals in thin samples. It will also enable nanospectroscopic studies of the chemical state of most materials relevant to energy science. The ISN beamline will be primarily used to study inorganic and organic photovoltaic systems, advanced batteries and fuel cells, nanoelectronics devices, and materials and systems diesigned to reduce the environmental impact of combustion.

Collaboration


Dive into the Sophie Charlotte Gleber's collaboration.

Top Co-Authors

Avatar

Stefan Vogt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chris Jacobsen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Si Chen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Barry Lai

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lydia Finney

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David J. Vine

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Qiaoling Jin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Deming Shu

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge