Sophie Croizier
University of Franche-Comté
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Croizier.
Journal of Clinical Investigation | 2015
Sophie M. Steculorum; Gustav Collden; Bérengère Coupé; Sophie Croizier; Sarah Kathleen Haas Lockie; Zane B. Andrews; Florian Jarosch; Sven Klussmann; Sebastien G. Bouret
A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation.
Molecular metabolism | 2014
Alexandre Picard; Nadim Kassis; Valentine S. Moullé; Sophie Croizier; R. Denis; Julien Castel; Nicolas Coant; Kathryn E. Davis; Deborah J. Clegg; Stephen C. Benoit; Vincent Prevot; Sebastien G. Bouret; Serge Luquet; Hervé Le Stunff; Céline Cruciani-Guglielmacci; Christophe Magnan
Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpl (lox/lox) mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis.
PLOS ONE | 2010
Sophie Croizier; Gabrielle Franchi-Bernard; Claude Colard; Fabrice Poncet; Pierre-Yves Risold
Sub-populations of neurons producing melanin-concentrating hormone (MCH) are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle.
PLOS ONE | 2011
Sophie Croizier; Clotilde Amiot; Xiaoping Chen; Françoise Presse; Jean–Louis Nahon; Jane Y. Wu; Dominique Fellmann; Pierre Yves Risold
In rats and mice, ascending and descending axons from neurons producing melanin-concentrating hormone (MCH) reach the cerebral cortex and spinal cord. However, these ascending and descending projections originate from distinct sub-populations expressing or not “Cocaine-and-Amphetamine-Regulated-Transcript” (CART) peptide. Using a BrdU approach, MCH cell bodies are among the very first generated in the hypothalamus, within a longitudinal cell cord made of earliest delaminating neuroblasts in the diencephalon and extending from the chiasmatic region to the ventral midbrain. This region also specifically expresses the regulatory genes Sonic hedgehog (Shh) and Nkx2.2. First MCH axons run through the tractus postopticus (tpoc) which gathers pioneer axons from the cell cord and courses parallel to the Shh/Nkx2.2 expression domain. Subsequently generated MCH neurons and ascending MCH axons differentiate while neurogenesis and mantle layer differentiation are generalized in the prosencephalon, including telencephalon. Ascending MCH axons follow dopaminergic axons of the mesotelencephalic tract, both being an initial component of the medial forebrain bundle (mfb). Netrin1 and Slit2 proteins that are involved in the establishment of the tpoc and mfb, respectively attract or repulse MCH axons. We conclude that first generated MCH neurons develop in a diencephalic segment of a longitudinal Shh/Nkx2.2 domain. This region can be seen as a prosencephalic segment of a medial neurogenic column extending from the chiasmatic region through the ventral neural tube. However, as the telencephalon expends, it exerts a trophic action and the mfb expands, inducing a switch in the longitudinal axial organization of the prosencephalon.
Frontiers in Neuroendocrinology | 2013
Sophie Croizier; J. Cardot; F. Brischoux; Dominique Fellmann; B. Griffond; Pierre-Yves Risold
Neurons synthesizing melanin-concentrating hormone (MCH) are described in the posterior hypothalamus of all vertebrates investigated so far. However, their anatomy is very different according to species: they are small and periventricular in lampreys, cartilaginous fishes or anurans, large and neuroendocrine in bony fishes, or distributed over large regions of the lateral hypothalamus in many mammals. An analysis of their comparative anatomy alongside recent data about the development of the forebrain, suggests that although very different, MCH neurons of the caudal hypothalamus are homologous. We further hypothesize that their divergent anatomy is linked to divergence in the forebrain - in particular telencephalic evolution.
Peptides | 2009
Pierre-Yves Risold; Sophie Croizier; K. Legagneux; F. Brischoux; Dominique Fellmann; B. Griffond
Although a great deal is published on the MCH neurons, very few works were devoted to the study of their development. However, existing literature points out two important traits: first, these neurons differentiate a MCH phenotype very early in all species studied so far, which might suggest a role for the MCH peptide during development; second, in the rat, birth date greatly influence the phenotype of MCH neurons. At least two sub-populations were described on the basis of their chemical phenotype, projection pattern and birth date. The understanding of processes involved in the differentiation of these sub-populations may help understand the medio-lateral differentiation of the tuberal hypothalamus.
Human Molecular Genetics | 2016
Julien Maillard; Soyoung Park; Sophie Croizier; Charlotte Vanacker; Joshua H. Cook; Vincent Prevot; Maithe Tauber; Sebastien G. Bouret
Prader-Willi syndrome (PWS) is a genetic disorder characterized by a variety of physiological and behavioral dysregulations, including hyperphagia, a condition that can lead to life-threatening obesity. Feeding behavior is a highly complex process with multiple feedback loops that involve both peripheral and central systems. The arcuate nucleus of the hypothalamus (ARH) is critical for the regulation of homeostatic processes including feeding, and this nucleus develops during neonatal life under of the influence of both environmental and genetic factors. Although much attention has focused on the metabolic and behavioral outcomes of PWS, an understanding of its effects on the development of hypothalamic circuits remains elusive. Here, we show that mice lacking Magel2, one of the genes responsible for the etiology of PWS, display an abnormal development of ARH axonal projections. Notably, the density of anorexigenic α-melanocyte-stimulating hormone axons was reduced in adult Magel2-null mice, while the density of orexigenic agouti-related peptide fibers in the mutant mice appeared identical to that in control mice. On the basis of previous findings showing a pivotal role for metabolic hormones in hypothalamic development, we also measured leptin and ghrelin levels in Magel2-null and control neonates and found that mutant mice have normal leptin and ghrelin levels. In vitro experiments show that Magel2 directly promotes axon growth. Together, these findings suggest that a loss of Magel2 leads to the disruption of hypothalamic feeding circuits, an effect that appears to be independent of the neurodevelopmental effects of leptin and ghrelin and likely involves a direct neurotrophic effect of Magel2.
Frontiers in Neuroanatomy | 2015
Sophie Croizier; Sandrine Chometton; Dominique Fellmann; Pierre-Yves Risold
Hypothalamic organizational concepts have greatly evolved as the primary hypothalamic pathways have been systematically investigated. In the present review, we describe how the hypothalamus arises from a molecularly heterogeneous region of the embryonic neural tube but is first differentiated as a primary neuronal cell cord (earliest mantle layer). This structure defines two axes that align onto two fundamental components: a longitudinal tractus postopticus(tpoc)/retinian component and a transverse supraoptic tract(sot)/olfactory component. We then discuss how these two axonal tracts guide the formation of all major tracts that connect the telencephalon with the hypothalamus/ventral midbrain, highlighting the existence of an early basic plan in the functional organization of the prosencephalic connectome.
Cell Reports | 2016
Sophie Croizier; Vincent Prevot; Sebastien G. Bouret
The autonomic nervous system plays a critical role in glucose metabolism through both its sympathetic and parasympathetic branches, but the mechanisms that underlie the development of the autonomic innervation of the pancreas remain poorly understood. Here, we report that cholinergic innervation of pancreatic islets develops during mid-gestation under the influence of leptin. Leptin-deficient mice display a greater cholinergic innervation of pancreatic islets beginning in embryonic life, and this increase persists into adulthood. Remarkably, a single intracerebroventricular injection of leptin in embryos caused a permanent reduction in parasympathetic innervation of pancreatic β cells and long-term impairments in glucose homeostasis. These developmental effects of leptin involve a direct inhibitory effect on the outgrowth of preganglionic axons from the hindbrain. These studies reveal an unanticipated regulatory role of leptin on the parasympathetic nervous system during embryonic development and may have important implications for our understanding of the early mechanisms that contribute to diabetes.
Biochimie | 2012
Stéphanie Seguin-Py; Géraldine Lucchi; Sophie Croizier; Fatima Zahra Chakrama; Gilles Despouy; Jaclyn Nicole Le Grand; Patrick Ducoroy; Wilfrid Boireau; Michaël Boyer-Guittaut; Michèle Jouvenot; Annick Fraichard; Régis Delage-Mourroux
GABARAPL1 belongs to the small family of GABARAP proteins (including GABARAP, GABARAPL1 and GABARAPL2/GATE-16), one of the two subfamilies of the yeast Atg8 orthologue. GABARAPL1 is involved in the intracellular transport of receptors, via an interaction with tubulin and GABA(A) or kappa opioid receptors, and also participates in autophagy and cell proliferation. In the present study, we identify the HSP90 protein as a novel interaction partner for GABARAPL1 using GST pull-down, mass spectrometry and coimmunoprecipitation experiments. GABARAPL1 and HSP90 partially colocalize in MCF-7 breast cancer cells overexpressed Dsred-GABARAPL1 and in rat brain. Moreover, treatment of MCF-7 cells overexpressed FLAG-GABARAPL1-6HIS with the HSP90 inhibitor 17-AAG promotes the GABARAPL1 degradation, a process that is blocked by proteasome inhibitors such as MG132, bortezomib and lactacystin. Accordingly, we demonstrate that HSP90 interacts and protects GABARAPL1 from its degradation by the proteasome.