Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie De Decker is active.

Publication


Featured researches published by Sophie De Decker.


Microbial Ecology | 2010

A Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation Between Virulence and Metalloprotease-like Activity

Denis Saulnier; Sophie De Decker; Laetitia Cobret; Maeva Robert; Celine Garcia

A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.


Journal of Microbiological Methods | 2009

Real-time PCR assay for rapid detection and quantification of Vibrio aestuarianus in oyster and seawater: A useful tool for epidemiologic studies

Denis Saulnier; Sophie De Decker

Because Vibrio aestuarianus is known to cause serious infections in Pacific oyster Crassostrea gigas, a real-time PCR assay was developed targeting the dnaJ gene of this bacterium. Only V. aestuarianus strains isolated from C. gigas mortality events in different geographic areas and the reference strain tested positive, whereas no amplification products was obtained with type strains belonging to 23 other species of Vibrio. Sensitivity and reproducibility of the method were assessed using either seawater or oyster homogenate samples spiked with one V. aestuarianus strain. All these samples were stored at -20 degrees C in order to mimic retrospective or grouped natural sample analysis without quantification bias due to prolonged freezing. Analysis of standard curves revealed excellent correlation values between light microscopy cell enumerations and PCR Threshold Cycle (Ct) values, and acceptable PCR reaction efficiencies for all type of samples. Quantification curves of both sample types were equivalent, with a detection level as low as 1.6 V. aestuarianus cells in the PCR reaction tube, corresponding to 1.6 x 10(2) cells ml(-1) and 1.6 x 10(2) cells mg(-1) in seawater and entire oyster samples, respectively, taking into account the dilution factor used for appropriate template DNA preparation. Comparison of PCR assay reproducibility according to the complexity of samples revealed that seawater samples gave more reproducible quantification measures than samples from oyster homogenate, with precision of measured Ct values inferior to 0.4 and 0.6 respectively at 99% confidence. Use of the real-time PCR assay allowed us to monitor V. aestuarianus load in oysters naturally infected with this pathogen. Furthermore, we were able to detect V. aestuarianus in samples of seawater in which oysters had been reared and in algal cultures used for feeding oysters. Because of the rapidity and reliability of the real-time PCR assay method used in this study, just a few hours are needed compared with the two days required using the classic culture method, this technique will be particularly valuable in mollusc pathology laboratories, for monitoring the source and course of infections by V. aestuarianus in pathogenesis and epidemiologic studies, as well as for designing appropriate prophylactic control measures.


Fish & Shellfish Immunology | 2011

First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes

Andrea Luna-Acosta; Denis Saulnier; Mylène Pommier; Sophie De Decker; Tristan Renault; Hélène Thomas-Guyon

Phenoloxidases (POs) are a group of copper proteins including tyrosinase, catecholase and laccase. In several insects and crustaceans, antibacterial substances are produced through the PO cascade, participating in the direct killing of invading microorganisms. However, although POs are widely recognised as an integral part of the invertebrate immune defence system, experimental evidence is lacking that these properties are conserved in molluscs, and more particularly in the Pacific oyster Crassostrea gigas. In the present study, Vibrio splendidus LGP32 and Vibrio aestuarianus 02/041 growths were affected, after being treated with C. gigas haemocyte lysate supernatant (HLS), and either a common substrate of POs, l-3,4-dihydroxyphenylalanine (L-DOPA), to detect catecholase-type PO activity, or a specific substrate of laccase, p-phenylenediamine (PPD), to detect laccase-type PO activity. Interestingly, a higher bacterial growth inhibition was observed in the presence of PPD than in the presence of L-DOPA. These effects were suppressed when the specific PO inhibitor, phenylthiourea (PTU), was added to the medium. Results of the present study suggest, for the first time in a mollusc species, that antibacterial activities of HLS from C. gigas potentially involve POs, and more particularly laccase catalysed reactions.


Fish & Shellfish Immunology | 2011

Vibriosis induced by experimental cohabitation in Crassostrea gigas: evidence of early infection and down-expression of immune-related genes.

Sophie De Decker; Denis Saulnier

The understanding of reciprocal interactions between Crassostrea gigas and Vibrio sp., whether these be virulent or avirulent, is vital for the development of methods to improve the health status of cultured oysters. We describe an original non-invasive experimental infection technique using cohabitation, designed to explore these interactions. Using real-time PCR techniques we examined the dynamics of virulent and avirulent Vibrio sp. in oyster hemolymph and tank seawater, and made a parallel study of the expression of four genes involved in oyster immune defense: Cg-BPI, Cg-EcSOD, Cg-IκB, Cg-TIMP. No mortality occurred in control animals, but oysters put in cohabitation for 2-48 h with animals previously infected by two Vibrio pathogens suffered mortalities from 2 to 16 days post-cohabitation. Our results show that virulent Vibrio infect healthy individuals after only 2 h of cohabitation, with values ranging from 4.5 x 10² to 2 x 10⁴ cells ml⁻¹ hemolymph. Simultaneously, an approximate ten-fold increase of the total Vibrio population was observed in control animals, with a 6.6-78.5-fold up-expression of targeted genes. In contrast, oysters exposed to harmful bacteria had mean expression levels strongly down-regulated by a factor of 9.2-29 (depending on the gene) compared with control animals. Although oysters were still found to be infected by virulent Vibrio after 6-48 h of cohabitation, no significant differences were noted when comparing levels of each transcript in control and infected oysters at the same sampling times during this period: the important differences were noted before 6 h cohabitation. Taken together, our data support (1) the hypothesis that virulent Vibrio disturbs the immune response of this invertebrate host both rapidly and significantly, although this occurs specifically during an early and transient period during the first 6 h of cohabitation challenge, and that (2) expression of targeted genes is not correlated with vibriosis resistance.


PLOS ONE | 2013

Molecular Typing of Environmental and Clinical Strains of Vibrio vulnificus Isolated in the Northeastern USA

Yann Reynaud; Steven Pitchford; Sophie De Decker; Gary H. Wikfors; Christopher L. Brown

Vibrio vulnificus is a ubiquitous marine bacterium that is responsible for infections and some seafood-related illnesses and deaths in the United States, mainly in individuals with compromised health status in the Gulf of Mexico region. Most phylogenetic studies focus on V. vulnificus strains isolated in the southern United States, but almost no genetic data are available on northeastern bacterial isolates of clinical or environmental origin. Our goal in this study was to examine the genetic diversity of environmental strains isolated from commercially-produced oysters and in clinical strains of known pathogenicity in northeastern United States. We conducted analyses of a total of eighty-three strains of V. vulnificus, including 18 clinical strains known to be pathogenic. A polyphasic, molecular-typing approach was carried out, based upon established biotypes, vcg, CPS, 16S rRNA types and three other genes possibly associated with virulence (arylsulfatase A, mtlABC, and nanA). An established Multi Locus Sequence Typing (MLST) method was also performed. Phylogenetic analyses of these markers and MLST results produced similar patterns of clustering of strains into two main lineages (we categorized as ‘LI’ and ‘LII’), with clinical and environmental strains clustering together in both lineages. Lineage LII was comprised primarily but not entirely of clinical bacterial isolates. Putative virulence markers were present in both clinical and environmental strains. These results suggest that some northeastern environmental strains of V. vulnificus are phylogenetically close to clinical strains and probably are capable of virulence. Further studies are necessary to assess the risk of human illness from consuming raw oysters harvested in the northeastern US.


Journal of Microbiological Methods | 2017

Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial cultures

Denis Saulnier; Sophie De Decker; Delphine Tourbiez; Marie Agnès Travers

To enable the rapid and accurate identification of Vibrio splendidus-related and V. aestuarianus strains associated with Pacific cupped oyster Crassostrea gigas mortality, we developed a duplex Taqman real-time PCR assay and evaluated its efficacy. This technique proved to be rapid, sensitive, and specific and will be particularly valuable for epidemiologic studies.


Aquaculture | 2006

“Summer Syndrome” in Litopenaeus stylirostris in New Caledonia: Pathology and epidemiology of the etiological agent, Vibrio nigripulchritudo

Cyrille Goarant; Dominique Ansquer; Jose Herlin; David Domalain; Frédéric Imbert; Sophie De Decker


Aquaculture | 2008

Cross breeding of different domesticated lines as a simple way for genetic improvement in small aquaculture industries: Heterosis and inbreeding effects on growth and survival rates of the Pacific blue shrimp Penaeus (Litopenaeus) stylirostris

Emmanuel Goyard; Cyrille Goarant; Dominique Ansquer; Pierre Brun; Sophie De Decker; Robert Dufour; Christian Galinié; Jean-Marie Peignon; Dominique Pham; Elodie Vourey; Yves Harache; Jacques Patrois


Systematic and Applied Microbiology | 2006

Molecular epidemiology of Vibrio nigripulchritudo, a pathogen of cultured penaeid shrimp (Litopenaeus stylirostris) in New Caledonia

Cyrille Goarant; Yann Reynaud; Dominique Ansquer; Sophie De Decker; Denis Saulnier; Frédérique Le Roux


Journal of Microbiological Methods | 2007

Sequence polymorphism-based identification and quantification of Vibrio nigripulchritudo at the species and subspecies level targeting an emerging pathogen for cultured shrimp in New Caledonia

Cyrille Goarant; Yann Reynaud; Dominique Ansquer; Sophie De Decker; Fabrice Merien

Collaboration


Dive into the Sophie De Decker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge