Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Dove is active.

Publication


Featured researches published by Sophie Dove.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Ocean acidification causes bleaching and productivity loss in coral reef builders

Kenneth R. N. Anthony; David I. Kline; Guillermo Diaz-Pulido; Sophie Dove; Ove Hoegh-Guldberg

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.


PLOS ONE | 2009

Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery

Guillermo Diaz-Pulido; Sophie Dove; Ray Berkelmans; George Roff; David I. Kline; Scarla J. Weeks; Richard D. Evans; David H. Williamson; Ove Hoegh-Guldberg

Background Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. Methodology/Principal Findings In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. Conclusions/Significance These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.


Ecology Letters | 2011

High CO2 enhances the competitive strength of seaweeds over corals

Guillermo Diaz-Pulido; Marine Gouezo; Bronte Tilbrook; Sophie Dove; Kenneth R. N. Anthony

Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.


PLOS ONE | 2012

Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

Paulina Kaniewska; Paul R. Campbell; David I. Kline; Mauricio Rodriguez-Lanetty; David J. Miller; Sophie Dove; Ove Hoegh-Guldberg

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.


Molecular Ecology | 2009

Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium

Eugenia M. Sampayo; Sophie Dove; Todd C. LaJeunesse

The diversity of symbiotic dinoflagellates (Symbiodinium) in pocilloporid corals originating from various reef habitats surrounding Heron Island, southern Great Barrier Reef, was examined by targeting ribosomal, mitochondrial, and chloroplast genes using six methods that analyse for sequence differences. The ability of each of 13 genetic analyses to characterize eight ecologically distinct Symbiodinium spp. was dependent on the level of conservation of the gene region targeted and the technique used. Other than differences in resolution, phylogenetic reconstructions using nuclear and organelle gene sequences were complementary and when combined produced a well‐resolved phylogeny. Analysis of the ribosomal internal transcribed spacers using denaturing gradient gel electrophoresis fingerprinting in combination with sequencing of dominant bands provided a precise method for rapidly resolving and characterizing symbionts into ecologically and evolutionarily distinct units of diversity. Single‐stranded conformation polymorphisms of the nuclear ribosomal large subunit (D1/D2 domain) identified the same number of ecologically distinct Symbiodinium spp., but profiles were less distinctive. The repetitive sequencing of bacterially cloned ITS2 polymerase chain reaction amplifications generated numerous sequence variants that clustered together according to the symbiont under analysis. The phylogenetic relationships between these clusters show how intragenomic variation in the ribosomal array diverges among closely related eukaryotic genomes. The strong correlation between phylogenetically independent lineages with different ecological and physiological attributes establishes a clear basis for assigning species designations to members of the genus Symbiodinium.


Molecular Ecology | 2007

Niche partitioning of closely related symbiotic dinoflagellates.

Eugenia M. Sampayo; Lorenzo Franceschinis; Ove Hoegh-Guldberg; Sophie Dove

Reef‐building corals are fundamental to the most diverse marine ecosystems, yet a detailed understanding of the processes involved in the establishment, persistence and ecology of the coral–dinoflagellate association remains largely unknown. This study explores symbiont diversity in relation to habitat by employing a broad‐scale sampling regime using ITS2 and denaturing gradient gel electrophoresis. Samples from Pocillopora damicornis, Stylophora pistillata and Seriatopora hystrix all harboured host‐specific clade C symbiont types at Heron Island (Great Barrier Reef, Australia). While Ser. hystrix associated with a single symbiont profile along its entire depth distribution, both P. damicornis and Sty. pistillata associated with multiple symbiont profiles that showed a strong zonation with depth. It is shown that, with an increased sampling effort, previously identified ‘rare’ symbiont types within this group of host species are in fact environmental specialists. A multivariate approach was used to expand on the common distinction of symbionts by a single genetic identity. It shows merit in its capacity not only to include all the variability present within the marker region but also to reliably represent ecological diversification of symbionts. Furthermore, the cohesive species concept is explored to explain how niche partitioning may drive diversification of closely related symbiont lineages. This study provides thus evidence that closely related symbionts are ecologically distinct and fulfil their own niche within the ecosystem provided by the host and external environment.


Structure | 2003

The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation.

Mark Prescott; Michael Ling; Travis Beddoe; Aaron J. Oakley; Sophie Dove; Ove Hoegh-Guldberg; Rodney J. Devenish; Jamie Rossjohn

Reef-building corals contain host pigments, termed pocilloporins, that function to regulate the light environment of their resident microalgae by acting as a photoprotectant in excessive sunlight. We have determined the crystal structure of an intensely blue, nonfluorescent pocilloporin to 2.2 A resolution and a genetically engineered fluorescent variant to 2.4 A resolution. The pocilloporin chromophore structure adopts a markedly different conformation in comparison with the DsRed chromophore, despite the chromophore sequences (Gln-Tyr-Gly) being identical; the tyrosine ring of the pocilloporin chromophore is noncoplanar and in the trans configuration. Furthermore, the fluorescent variant adopted a noncoplanar chromophore conformation. The data presented here demonstrates that the conformation of the chromophore is highly dependent on its immediate environment.


Journal of Phycology | 2007

Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals

William Leggat; Ove Hoegh-Guldberg; Sophie Dove; David Yellowlees

Dinoflagellates (Symbiodinium sp. Freud.) are an obligatory endosymbiont of the reef‐building corals. Recent changes to the environment surrounding coral reefs (e.g., global warming) have demonstrated that this endosymbiotic relationship between corals and Symbiodinium is particularly sensitive to environmental changes. Therefore, understanding gene expression patterns of Symbiodinium is critical to understanding why coral reefs are susceptible to global climate change. This study identified 1456 unique expression sequence tags (ESTs) generated for Symbiodinium (clade C3) from the staghorn coral Acropora aspera following exposure to a variety of stresses. Of these, only 10% matched previously reported dinoflagellate ESTs, suggesting that the conditions used in the construction of the library resulted in a novel transcriptome. The function of 561 (44%) of these ESTs could be identified. The majority of these genes coded for proteins involved in posttranslational modification, protein turnover, and chaperones (12.3%); energy production and conversion (12%); or an unknown function (18.6%). The most common transcript found was a homologue to a bacterial protein of unknown function. This algal protein is targeted to the chloroplast and is present in those phototrophs that acquired plastids from the red algal lineage. An additional 48 prokaryote‐like proteins were also identified, including the first glycerol‐phosphate:phosphate antiporter from dinoflagellates. A protein with similarity to the fungi–archael–bacterial heme catalase peroxidases was also found. A variety of stress genes, in particular heat‐shock proteins and proteins involved in ubiquitin cascades, were also identified. This study is the first transcriptome from the unicellular component of a eukaryote–eukaryote symbiosis.


Journal of Phycology | 2012

Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae

Guillermo Diaz-Pulido; Kenneth R. N. Anthony; David I. Kline; Sophie Dove; Ove Hoegh-Guldberg

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high‐pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral‐reef ecosystems.


The ISME Journal | 2012

A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis

Mathieu Pernice; Anders Meibom; Annamieke Van Den Heuvel; C. Kopp; Isabelle Domart-Coulon; Ove Hoegh-Guldberg; Sophie Dove

Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitrogen source, the dynamics and precise roles of host and symbionts in this fundamental process remain unclear. Here, we combine high spatial resolution ion microprobe imaging (NanoSIMS) and pulse-chase isotopic labeling in order to track the dynamics of ammonium incorporation within the intact symbiosis between the reef-building coral Acropora aspera and its dinoflagellate symbionts. We demonstrate that both dinoflagellate and animal cells have the capacity to rapidly fix nitrogen from seawater enriched in ammonium (in less than one hour). Further, by establishing the relative strengths of the capability to assimilate nitrogen for each cell compartment, we infer that dinoflagellate symbionts can fix 14 to 23 times more nitrogen than their coral host cells in response to a sudden pulse of ammonium-enriched seawater. Given the importance of nitrogen in cell maintenance, growth and functioning, the capability to fix ammonium from seawater into the symbiotic system may be a key component of coral nutrition. Interestingly, this metabolic response appears to be triggered rapidly by episodic nitrogen availability. The methods and results presented in this study open up for the exploration of dynamics and spatial patterns associated with metabolic activities and nutritional interactions in a multitude of organisms that live in symbiotic relationships.

Collaboration


Dive into the Sophie Dove's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David I. Kline

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon R. Dunn

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth R. N. Anthony

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge