Sophie Drouillard
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Drouillard.
Carbohydrate Research | 1997
Eric Samain; Sophie Drouillard; Alain Heyraud; Hugues Driguez; Roberto A. Geremia
Cultivation of Escherichia coli harbouring heterologous genes of oligosaccharide synthesis is presented as a new method for preparing large quantities of high-value oligosaccharides. To test the feasibility of this method, we successfully produced in high yield (up to 2.5 g/L) penta-N-acetyl-chitopentaose (1) and its deacetylated derivative tetra-N-acetyl-chitopentaose (2) by cultivating at high density cells of E. coli expressing nodC or nodBC genes (nodC and nodB encode for chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively). These two products were easily purified by charcoal adsorption and ion-exchange chromatography. One important application of compound 2 could be its utilisation as a precursor for the preparation of synthetic nodulation factors by chemical acylation.
Journal of Biological Chemistry | 1997
Sylvie Armand; Sophie Drouillard; Martin Schülein; Bernard Henrissat; Hugues Driguez
Cellulases are usually classified as endoglucanases and cellobiohydrolases, but the heterogeneity of cellulose, in terms of particle size and crystallinity, has always represented a problem for the biochemical characterization of the enzymes. The synthesis of a bifunctionalized tetrasaccharide substrate suitable for measuring cellulase activity by resonance energy transfer is described. The substrate, which carries a 5-(2-aminoethylamino)-1-naphthalenesulfonate group on the non-reducing end and an indolethyl group on the reducing end, was prepared from β-lactosyl fluoride and indolethyl β-cellobioside by a chemoenzymatic approach using the transglycosylating activity of endoglucanase I of Humicola insolens as the key step. The bifunctionalized substrate has been used for the determination of the catalytic constants of H. insolens endoglucanase I and cellobiohydrolases I and II; this substrate could be of general use to measure the kinetic constants of cellulases able to act on oligomers of degree of polymerization <5. The data also provide evidence that cellobiohydrolases I and II are able to degrade an oligosaccharide substrate carrying non-carbohydrate substituents at both ends.
PLOS ONE | 2013
Amaury Nars; Claude Lafitte; Mireille Chabaud; Sophie Drouillard; Hugo Mélida; Saïda Danoun; Tinaïg Le Costaouëc; Thomas Rey; Julie Benedetti; Vincent Bulone; David G. Barker; Jean-Jacques Bono; Bernard Dumas; Christophe Jacquet; Laurent Heux; Judith Fliegmann; Arnaud Bottin
N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.
Carbohydrate Research | 2012
Hélène Barreteau; Emeline Richard; Sophie Drouillard; Eric Samain; Bernard Priem
The cluster of genes of capsular K5 heparosan is composed of three regions, involved in the synthesis and the exportation of the polysaccharide. The region 2 possesses all the necessary genes involved in the synthesis of heparosan, namely kfiA, encoding alpha-4-N-acetylglucosaminyltransferase, kfiD, encoding β-3-glucuronyl transferase, kfiC, encoding UDP-glucose dehydrogenase (UDP-glucuronic acid synthesis), and kfiB encoding a protein of unknown function. The cloning and expression of kfiADCB into Escherichia coli K-12 were found to be sufficient for the production of heparosan, which accumulates in the cells due to a lack of the exporting system. The concentration of recombinant heparosan reached one gram per liter under fed-batch cultivation. The cytoplasmic localization of heparosan inside the bacteria allowed subsequent enzymatic modifications such as a partial degradation with K5 lyase when expressed intracellularly. Under these conditions, the production of DP 2-10 oligosaccharides occurred intracellularly, at a concentration similar to that of recombinant intracellular heparosan.
FEBS Letters | 2007
Mialy Randriantsoa; Sophie Drouillard; Christelle Breton; Eric Samain
We have previously described a bacterial system for the conversion of globotriaose (Gb3) into globotetraose (Gb4) by a metabolically engineered Escherichia coli strain expressing the Haemophilus influenzae lgtD gene encoding β1,3‐N‐acetylgalactosaminyltransferase [Antoine, T., Bosso, C., Heyraud, A. Samain, E. (2005) Large scale in vivo synthesis of globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli. Biochimie 87, 197–203]. Here, we found that LgtD has an additional β1,3‐galactosyltransferase activity which allows our bacterial system to be extended to the synthesis of the carbohydrate portion of globopentaosylceramide (Galβ‐3GalNAcβ‐3Galα‐4Galβ‐4Glc) which reacts with the monoclonal antibody defining the stage‐specific embryonic antigen‐3. In vitro assays confirmed that LgtD had both β1,3‐GalT and β1,3‐GalNAcT activities and showed that differences in the affinity for Gb3 and Gb4 explain the specific and exclusive formation of globopentaose.
Glycobiology | 2015
Anita Sarkar; Sophie Drouillard; Alain Rivet; Serge Pérez
The present study reports a comprehensive nuclear magnetic resonance (NMR) characterization and a systematic conformational sampling of the conformational preferences of 170 glycan moieties of glycosphingolipids as produced in large-scale quantities by bacterial fermentation. These glycans span across a variety of families including the blood group antigens (A, B and O), core structures (Types 1, 2 and 4), fucosylated oligosaccharides (core and lacto-series), sialylated oligosaccharides (Types 1 and 2), Lewis antigens, GPI-anchors and globosides. A complementary set of about 100 glycan determinants occurring in glycoproteins and glycosaminoglycans has also been structurally characterized using molecular mechanics-based computation. The experimental and computational data generated are organized in two relational databases that can be queried by the user through a user-friendly search engine. The NMR ((1)H and (13)C, COSY, TOCSY, HMQC, HMBC correlation) spectra and 3D structures are available for visualization and download in commonly used structure formats. Emphasis has been given to the use of a common nomenclature for the structural encoding of the carbohydrates and each glycan molecule is described by four different types of representations in order to cope with the different usages in chemistry and biology. These web-based databases were developed with non-proprietary software and are open access for the scientific community available at http://glyco3d.cermav.cnrs.fr.
Carbohydrate Research | 2012
Caroline Gebus; Claire Cottin; Mialy Randriantsoa; Sophie Drouillard; Eric Samain
The α-Gal epitope is a carbohydrate structure, Galα-3Galβ-4GlcNAc-R, expressed on glycoconjuguates in many mammals, but not in humans. Species that do not express this epitope have present in their serum large amounts of natural anti-Gal antibodies, which contribute to organ hyperacute rejection during xenotransplantation. We first describe the efficient conversion of lactose into isoglobotriaose (Galα-3Galβ-4Glc) using high cell density cultures of a genetically engineered Escherichia coli strain expressing the bovine gene for α-1,3-galactosyltransferase. Attempts to produce the Galili pentasaccharide (Galα-3Galβ-4GlcNAcβ-3Galβ-4Glc) by additionally expressing the Neisseria meningitis lgtA gene for β-1,3-N-acetylglucosaminyltransferase and the Helicobacter pylori gene for β-1,4-galactosyltransferase were unsuccessful and led to the formation of a series of long chain oligosaccharides formed by the repeated addition of the trisaccharide motif [Galβ-4GlcNAcβ-3Galα-3] onto a lacto-N-neotetraose primer. The replacement of LgtA by a more specific β-1,3-N-acetylglucosaminyltransferase from H. pylori, which was unable to glycosylate α-galactosides, prevented the formation of these unwanted compounds and allowed the successful formation of the Galili pentasaccharide and longer α-Gal epitopes.
Marine Drugs | 2015
Sophie Drouillard; Isabelle Jeacomine; Laurine Buon; Claire Boisset; Anthony Courtois; Bertrand Thollas; Pierre-Yves Morvan; Romuald Vallee; William Helbert
Vibrio alginolyticus (CNCM I-4994) secretes an exopolysaccharide that can be used as an ingredient in cosmetic applications. The structure was resolved using chromatography and one- and two-dimensional NMR spectroscopy experiments. The results show that the carbohydrate backbone is made of two residues: d-galacturonic acid and N-acetyl-d-glucosamine (GlcNac), which together constitute a tetrasaccharide repetition unit: [→3)-α-d-GalA-(1→4)-α-d-GalA-(1→3)-α-d-GalA-(1→3)-β-GlcNAc(1→]. Two amino acids, alanine and serine, are linked to GalA residues via amido linkages. The position and the distribution of the amino acids were characterized by two-dimensional NMR spectroscopy. To our knowledge, this is the first description of a structure for a marine exopolysaccharide decorated with an amino acid.
Glycobiology | 2016
Emeline Richard; Laurine Buon; Sophie Drouillard; Sébastien Fort; Bernard Priem
Bacterial polysialyltransferases (PSTs) are processive enzymes involved in the synthesis of polysialic capsular polysaccharides. They can also synthesize polysialic acid in vitro from disialylated and trisialylated lactoside acceptors, which are the carbohydrate moieties of GD3 and GT3 gangliosides, respectively. Here, we engineered a non-pathogenic Escherichia coli strain that overexpresses recombinant sialyltransferases and sialic acid synthesis genes and can convert an exogenous lactoside into polysialyl lactosides. Several PSTs were assayed for their ability to synthesize polysialyl lactosides in the recombinant strains. Fed-batch cultures produced α-2,8 polysialic acid or alternate α-2,8-2,9 polysialic acid in quantities reaching several grams per liter. Bacterial culture in the presence of propargyl-β-lactoside as the exogenous acceptor led to the production of conjugatable polysaccharides by means of copper-assisted click chemistry.
Scientific Reports | 2018
Sophie Mathieu; Mélanie Touvrey-Loiodice; Laurent Poulet; Sophie Drouillard; Renaud Vincentelli; Bernard Henrissat; Gudmund Skjåk-Bræk; William Helbert
In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.