Sophie Filleur
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Filleur.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Tony Remans; Philippe Nacry; Marjorie Pervent; Sophie Filleur; Eugene Diatloff; Emmanuelle Mounier; Pascal Tillard; Brian G. Forde; Alain Gojon
Localized proliferation of lateral roots in NO3−-rich patches is a striking example of the nutrient-induced plasticity of root development. In Arabidopsis, NO3− stimulation of lateral root elongation is apparently under the control of a NO3−-signaling pathway involving the ANR1 transcription factor. ANR1 is thought to transduce the NO3− signal internally, but the upstream NO3− sensing system is unknown. Here, we show that mutants of the NRT1.1 nitrate transporter display a strongly decreased root colonization of NO3−-rich patches, resulting from reduced lateral root elongation. This phenotype is not due to lower specific NO3− uptake activity in the mutants and is not suppressed when the NO3−-rich patch is supplemented with an alternative N source but is associated with dramatically decreased ANR1 expression. These results show that NRT1.1 promotes localized root proliferation independently of any nutritional effect and indicate a role in the ANR1-dependent NO3− signaling pathway, either as a NO3− sensor or as a facilitator of NO3− influx into NO3−-sensing cells. Consistent with this model, the NRT1.1 and ANR1 promoters both directed reporter gene expression in root primordia and root tips. The inability of NRT1.1-deficient mutants to promote increased lateral root proliferation in the NO3−-rich zone impairs the efficient acquisition of NO3− and leads to slower plant growth. We conclude that NRT1.1, which is localized at the forefront of soil exploration by the roots, is a key component of the NO3−-sensing system that enables the plant to detect and exploit NO3−-rich soil patches.
Annual Review of Plant Biology | 2011
Hélène Barbier-Brygoo; Alexis De Angeli; Sophie Filleur; Jean-Marie Frachisse; Franco Gambale; Sébastien Thomine; Stefanie Wege
Anion channels/transporters are key to a wide spectrum of physiological functions in plants, such as osmoregulation, cell signaling, plant nutrition and compartmentalization of metabolites, and metal tolerance. The recent identification of gene families encoding some of these transport systems opened the way for gene expression studies, structure-function analyses of the corresponding proteins, and functional genomics approaches toward further understanding of their integrated roles in planta. This review, based on a few selected examples, illustrates that the members of a given gene family exhibit a diversity of substrate specificity, regulation, and intracellular localization, and are involved in a wide range of physiological functions. It also shows that post-translational modifications of transport proteins play a key role in the regulation of anion transport activity. Key questions arising from the increasing complexity of networks controlling anion transport in plant cells (the existence of redundancy, cross talk, and coordination between various pathways and compartments) are also addressed.
Plant Journal | 2010
Mathieu Jossier; Laëtitia Kroniewicz; Fabien Dalmas; D. Le Thiec; Geneviève Ephritikhine; Sébastien Thomine; Hélène Barbier-Brygoo; Alain Vavasseur; Sophie Filleur; Nahalie Leonhardt
In plant cells, anion channels and transporters are essential for key functions such as nutrition, resistance to biotic or abiotic stresses, and ion homeostasis. In Arabidopsis, members of the chloride channel (CLC) family located in intracellular organelles have been shown to be required for nitrate homeostasis or pH adjustment, and previous results indicated that AtCLCc is involved in nitrate accumulation. We investigated new physiological functions of this CLC member in Arabidopsis. Here we report that AtCLCc is strongly expressed in guard cells and pollen and more weakly in roots. Use of an AtCLCc:GFP fusion revealed localization to the tonoplast. Disruption of the AtCLCc gene by a T-DNA insertion in four independent lines affected physiological responses that are directly related to the movement of chloride across the tonoplast membrane. Opening of clcc stomata was reduced in response to light, and ABA treatment failed to induce their closure, whereas application of KNO₃ but not KCl restored stomatal opening. clcc mutant plants were hypersensitive to NaCl treatment when grown on soil, and to NaCl and KCl in vitro, confirming the chloride dependence of the phenotype. These phenotypes were associated with modifications of chloride content in both guard cells and roots. These data demonstrate that AtCLCc is essential for stomatal movement and salt tolerance by regulating chloride homeostasis.
Journal of Biological Chemistry | 2009
Alexis De Angeli; Oscar Moran; Stefanie Wege; Sophie Filleur; Geneviève Ephritikhine; Sébastien Thomine; Hélène Barbier-Brygoo; Franco Gambale
Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO3−/H+ exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine β-synthetase motifs in all eukaryotic members of the CLC family is able to interact with ATP. However, interaction of nucleotides with a functional CLC protein has not been unambiguously demonstrated. Here we show that ATP reversibly inhibits AtCLCa by interacting with the C-terminal domain. Applying the patch clamp technique to isolated Arabidopsis thaliana vacuoles, we demonstrate that ATP reduces AtCLCa activity with a maximum inhibition of 60%. ATP inhibition of nitrate influx into the vacuole at cytosolic physiological nitrate concentrations suggests that ATP modulation is physiologically relevant. ADP and AMP do not decrease the AtCLCa transport activity; nonetheless, AMP (but not ADP) competes with ATP, preventing inhibition. A molecular model of the C terminus of AtCLCa was built by homology to hCLC5 C terminus. The model predicted the effects of mutations of the ATP binding site on the interaction energy between ATP and AtCLCa that were further confirmed by functional expression of site-directed mutated AtCLCa.
Plant Journal | 2010
Stefanie Wege; Mathieu Jossier; Sophie Filleur; Sébastien Thomine; Hélène Barbier-Brygoo; Franco Gambale; Alexis De Angeli
Nitrate, the major nitrogen source for plants, can be accumulated in the vacuole. Its transport across the vacuolar membrane is mediated by AtCLCa, an antiporter of the chloride channel (CLC) protein family. In contrast to other CLC family members, AtCLCa transports nitrate coupled to protons. Recently, the different behaviour towards nitrate of CLC proteins has been linked to the presence of a serine or proline in the selectivity filter motif GXGIP. By monitoring AtCLCa activity in its native environment, we show that if proline 160 in AtCLCa is changed to a serine (AtCLCa(P160S) ), the transporter loses its nitrate selectivity, but the anion proton exchange mechanism is unaffected. We also performed in vivo analyses in yeast and Arabidopsis. In contrast to native AtCLCa, expression of AtCLCa(P160S) does not complement either the ΔScCLC yeast mutant grown on nitrate or the nitrate under-accumulation phenotype of clca knockout plants. Our results confirm the significance of this amino acid in the conserved selectivity filter of CLC proteins and highlight the importance of the proline in AtCLCa for nitrate metabolism in Arabidopsis.
Science Signaling | 2014
Stefanie Wege; Alexis De Angeli; Marie-Jo Droillard; Laëtitia Kroniewicz; Sylvain Merlot; David Cornu; Franco Gambale; Enrico Martinoia; Hélène Barbier-Brygoo; Sébastien Thomine; Nathalie Leonhardt; Sophie Filleur
The Arabidopsis vacuolar anion/proton exchanger AtCLCa contributes to both opening and closing of stomata. One Exchanger to Open and Close the Pores Turgor pressure in the guard cells of plant leaves controls pores called stomata, which enable gas exchange and photosynthesis when open and limit water loss when closed. Light opens these pores, whereas the hormone abscisic acid (ABA) keeps them closed. Ions and water imported into or released from the vacuole control the turgor pressure of guard cells. Wege et al. found that Arabidopsis plants lacking the vacuolar anion/proton exchanger AtCLCa did not effectively open or close their stomata. In light, AtCLCa mediated the uptake of anions into the vacuole to aid in opening the pores, and ABA stimulated AtCLCa phosphorylation and enhanced its efflux activity, which helped to close the pores. Thus, a single exchanger can move ions bidirectionally depending on the plant’s photosynthetic and water conservation needs. Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata. We showed that AtCLCa not only fulfilled the expected role of accumulating anions in the vacuole during stomatal opening but also mediated anion release during stomatal closure in response to the stress hormone abscisic acid (ABA). We found that this dual role resulted from a phosphorylation-dependent change in the activity of AtCLCa. The protein kinase OST1 (also known as SnRK2.6) is a key signaling player and central regulator in guard cells in response to ABA. Phosphorylation of Thr38 in the amino-terminal cytoplasmic domain of AtCLCa by OST1 increased the outward anion fluxes across the vacuolar membrane, which are essential for stomatal closure. We provide evidence that bidirectional activities of an intracellular CLC exchanger are physiologically relevant and that phosphorylation regulates the transport mode of this exchanger.
Journal of Experimental Botany | 2014
Magdalena Migocka; Anna Papierniak; Ewa Maciaszczyk-Dziubinska; Piotr Poździk; Ewelina Posyniak; Arnold Garbiec; Sophie Filleur
Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells.
Journal of Experimental Botany | 2015
Magdalena Migocka; Anna Kosieradzka; Anna Papierniak; Ewa Maciaszczyk-Dziubinska; Ewelina Posyniak; Arnold Garbiec; Sophie Filleur
Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.
Plant and Cell Physiology | 2016
Chi Tam Nguyen; Astrid Agorio; Mathieu Jossier; Sylvain Depré; Sébastien Thomine; Sophie Filleur
In plant cells, anion channels and transporters are essential for key functions such as nutrition, ion homeostasis and resistance to biotic or abiotic stresses. We characterized AtCLCg, a member of the chloride channel (CLC) family in Arabidopsis localized in the vacuolar membrane. When grown on NaCl or KCl, atclcg knock-out mutants showed a decrease in biomass. In the presence of NaCl, these mutants overaccumulate chloride in shoots. No difference in growth was detected in response to osmotic stress by mannitol. These results suggest a physiological function of AtCLCg in the chloride homeostasis during NaCl stress. AtCLCg shares a high degree of identity (62%) with AtCLCc, another vacuolar CLC essential for NaCl tolerance. However, the atclcc atclccg double mutant is not more sensitive to NaCl than single mutants. As the effects of both mutations are not additive, gene expression analyses were performed and revealed that: (i)AtCLCg is expressed in mesophyll cells, hydathodes and phloem while AtCLCc is expressed in stomata; and (ii)AtCLCg is repressed in the atclcc mutant background, and vice versa. Altogether these results demonstrate that both AtCLCc and AtCLCg are important for tolerance to excess chloride but not redundant, and form part of a regulatory network controlling chloride sensitivity.
Journal of Experimental Botany | 2011
Julie Dechorgnat; Chi Tam Nguyen; Patrick Armengaud; Mathieu Jossier; Eugene Diatloff; Sophie Filleur; Francxoise Daniel-Vedele