Sophie Fillon
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Fillon.
Gut | 2013
Glenn T. Furuta; Amir F. Kagalwalla; James J. Lee; Preeth Alumkal; Brian Maybruck; Sophie Fillon; Joanne C. Masterson; Sergei I. Ochkur; Cheryl A. Protheroe; Wendy Moore; Zhaoxing Pan; Katie Amsden; Zachary D. Robinson; Kelley E. Capocelli; Vince Mukkada; Dan Atkins; David M. Fleischer; Lindsay Hosford; Mark A. Kwatia; Shauna Schroeder; Caleb J. Kelly; Mark A. Lovell; Hector Melin-Aldana; Steven J. Ackerman
Objective Eosinophil predominant inflammation characterises histological features of eosinophilic oesophagitis (EoE). Endoscopy with biopsy is currently the only method to assess oesophageal mucosal inflammation in EoE. We hypothesised that measurements of luminal eosinophil-derived proteins would correlate with oesophageal mucosal inflammation in children with EoE. Design The Enterotest diagnostic device was used to develop an oesophageal string test (EST) as a minimally invasive clinical device. EST samples and oesophageal mucosal biopsies were obtained from children undergoing upper endoscopy for clinically defined indications. Eosinophil-derived proteins including eosinophil secondary granule proteins (major basic protein-1, eosinophil-derived neurotoxin, eosinophil cationic protein, eosinophil peroxidase) and Charcot–Leyden crystal protein/galectin-10 were measured by ELISA in luminal effluents eluted from ESTs and extracts of mucosal biopsies. Results ESTs were performed in 41 children with active EoE (n=14), EoE in remission (n=8), gastro-oesophageal reflux disease (n=4) and controls with normal oesophagus (n=15). EST measurement of eosinophil-derived protein biomarkers significantly distinguished between children with active EoE, treated EoE in remission, gastro-oesophageal reflux disease and normal oesophagus. Levels of luminal eosinophil-derived proteins in EST samples significantly correlated with peak and mean oesophageal eosinophils/high power field (HPF), eosinophil peroxidase indices and levels of the same eosinophil-derived proteins in extracts of oesophageal biopsies. Conclusions The presence of eosinophil-derived proteins in luminal secretions is reflective of mucosal inflammation in children with EoE. The EST is a novel, minimally invasive device for measuring oesophageal eosinophilic inflammation in children with EoE.
The Journal of Allergy and Clinical Immunology | 2012
Amir F. Kagalwalla; Noorain Akhtar; Samantha A. Woodruff; Bryan Rea; Joanne C. Masterson; Vincent A. Mukkada; Kalyan Ray Parashette; Jian Du; Sophie Fillon; Cheryl A. Protheroe; James J. Lee; Katie Amsden; Hector Melin-Aldana; Kelley E. Capocelli; Glenn T. Furuta; Steven J. Ackerman
BACKGROUND Mechanisms underlying esophageal remodeling with subepithelial fibrosis in subjects with eosinophilic esophagitis (EoE) have not been delineated. OBJECTIVES We sought to explore a role for epithelial mesenchymal transition (EMT) in subjects with EoE and determine whether EMT resolves with treatment. METHODS Esophageal biopsy specimens from 60 children were immunostained for epithelial (cytokeratin) and mesenchymal (vimentin) EMT biomarkers, and EMT was quantified. Subjects studied had EoE (n = 17), indeterminate EoE (n = 15), gastroesophageal reflux disease (n = 7), or normal esophagus (n = 21). EMT was analyzed for relationships to diagnosis, eosinophil counts, and indices of subepithelial fibrosis, eosinophil peroxidase, and TGF-β immunostaining. EMT was assessed in pretreatment and posttreatment biopsy specimens from 18 subjects with EoE treated with an elemental diet, 6-food elimination diet, or topical corticosteroids (n = 6 per group). RESULTS TGF-β1 treatment of esophageal epithelial cells in vitro for 24 hours induced upregulation of mesenchymal genes characteristic of EMT, including N-cadherin (3.3-fold), vimentin (2.1-fold), and fibronectin (7.5-fold). EMT in esophageal biopsy specimens was associated with EoE (or indeterminate EoE) but not gastroesophageal reflux disease or normal esophagus and was correlated to eosinophil counts (r = 0.691), eosinophil peroxidase (r = 0.738), and TGF-β (r = 0.520) immunostaining and fibrosis (r = 0.644) indices. EMT resolved with EoE treatments that induced clinicopathologic remission with reduced eosinophil counts. EMT decreased significantly after treatment by 74.1% overall in the 18 treated subjects with EoE; pretreatment versus posttreatment EMT scores were 3.17 ± 0.82 versus 0.82 ± 0.39 (P < .001), with similar decreases within treatment groups. Pretreatment/posttreatment EMT was strongly correlated with eosinophil counts for combined (r = 0.804, P < .001) and individual treatment groups. CONCLUSIONS EMT likely contributes to subepithelial fibrosis in subjects with EoE and resolves with treatments that decrease esophageal inflammation, and its resolution correlates with decreased numbers of esophageal eosinophils.
Hepatology | 2012
Karim C. El Kasmi; Aimee L. Anderson; Michael W. Devereaux; Sophie Fillon; J. Kirk Harris; Mark A. Lovell; Milton J. Finegold; Ronald J. Sokol
Infants with intestinal failure who are parenteral nutrition (PN)‐dependent may develop cholestatic liver injury and cirrhosis (PN‐associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes lipopolysaccharide (LPS)–Toll‐like receptor 4 (TLR4) signaling dependent Kupffer cell (KC) activation as an early event in the pathogenesis of PNALI. We developed a mouse model in which intestinal injury and increased permeability were induced by oral treatment for 4 days with dextran sulphate sodium (DSS) followed by continuous infusion of soy lipid‐based PN solution through a central venous catheter for 7 (PN7d/DSS) and 28 (PN28d/DSS) days. Purified KCs were probed for transcription of proinflammatory cytokines. PN7d/DSS mice showed increased intestinal permeability and elevated portal vein LPS levels, evidence of hepatocyte injury and cholestasis (serum aspartate aminotransferase, alanine aminotransferase, bile acids, total bilirubin), and increased KC expression of interleukin‐6 (Il6), tumor necrosis factor α (Tnfα), and transforming growth factor β (Tgfβ). Markers of liver injury remained elevated in PN28d/DSS mice associated with lobular inflammation, hepatocyte apoptosis, peliosis, and KC hypertrophy and hyperplasia. PN infusion without DSS pretreatment or DSS pretreatment alone did not result in liver injury or KC activation, even though portal vein LPS levels were elevated. Suppression of the intestinal microbiota with broad spectrum antibiotics or ablation of TLR4 signaling in Tlr4 mutant mice resulted in significantly reduced KC activation and markedly attenuated liver injury in PN7d/DSS mice. Conclusion: These data suggest that intestinal‐derived LPS activates KC through TLR4 signaling in early stages of PNALI. (HEPATOLOGY 2012)
Journal of Immunology | 2006
Sophie Fillon; Konstantinos Soulis; Surender Rajasekaran; Heather Benedict-Hamilton; Jana N. Radin; Carlos J. Orihuela; Karim C. El Kasmi; Gopal Murti; Deepak Kaushal; M. Waleed Gaber; Joerg R. Weber; Peter J. Murray; Elaine Tuomanen
The current model of innate immune recognition of Gram-positive bacteria suggests that the bacterial cell wall interacts with host recognition proteins such as TLRs and Nod proteins. We describe an additional recognition system mediated by the platelet-activating factor receptor (PAFr) and directed to the pathogen-associated molecular pattern phosphorylcholine that results in the uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild-type, Tlr2−/−, and Nod2−/− mice but not in Pafr−/− mice. The cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes, and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons but causing a rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as the cell wall into host cells from where the response ranges from quiescence to severe pathophysiology.
Cellular Microbiology | 2008
Lilian O. Moreira; Karim C. El Kasmi; Amber M. Smith; David Finkelstein; Sophie Fillon; Yun Gi Kim; Gabriel Núñez; Elaine Tuomanen; Peter J. Murray
Systemic infection with Streptococcus pneumoniae is associated with a vigorous pro‐inflammatory response to structurally complex cell wall fragments (PnCW) that are shed during cell growth and antibiotic‐induced autolysis. Consistent with previous studies, inflammatory cytokine production induced by PnCW was dependent on TLR2 but independent of NOD2, a cytoplasmic NLR protein. However, in parallel with the pro‐inflammatory response, we found that PnCW also induced prodigious secretion of anti‐inflammatory IL‐10 from macrophages. This response was dependent on TLR2, but also involved NOD2 as absence of NOD2‐reduced IL‐10 secretion in response to cell wall and translated into diminished downstream effects on IL‐10‐regulated target gene expression. PnCW‐mediated production of IL‐10 via TLR2 required RIPK2 a kinase required for NOD2 function, and MyD88 but differed from that known for zymosan in that ERK pathway activation was not detected. As mutations in NOD2 are linked to aberrant immune responses, the temporal and quantitative effects of activation of the TLR2‐NOD2‐RIPK2 pathway on IL‐10 secretion may affect the balance between pro‐ and anti‐inflammatory responses to Gram‐positive bacteria.
PLOS ONE | 2015
J. Kirk Harris; Rui Fang; Brandie D. Wagner; Ha Na Choe; Caleb J. Kelly; Shauna Schroeder; Wendy Moore; Mark J. Stevens; Alyson Yeckes; Katie Amsden; Amir F. Kagalwalla; Angelika Zalewski; Ikuo Hirano; Nirmala Gonsalves; Lauren N. Henry; Joanne C. Masterson; Charles E. Robertson; Donald Y.M. Leung; Norman R. Pace; Steven J. Ackerman; Glenn T. Furuta; Sophie Fillon
Objective The microbiome has been implicated in the pathogenesis of a number of allergic and inflammatory diseases. The mucosa affected by eosinophilic esophagitis (EoE) is composed of a stratified squamous epithelia and contains intraepithelial eosinophils. To date, no studies have identified the esophageal microbiome in patients with EoE or the impact of treatment on these organisms. The aim of this study was to identify the esophageal microbiome in EoE and determine whether treatments change this profile. We hypothesized that clinically relevant alterations in bacterial populations are present in different forms of esophagitis. Design In this prospective study, secretions from the esophageal mucosa were collected from children and adults with EoE, Gastroesophageal Reflux Disease (GERD) and normal mucosa using the Esophageal String Test (EST). Bacterial load was determined using quantitative PCR. Bacterial communities, determined by 16S rRNA gene amplification and 454 pyrosequencing, were compared between health and disease. Results Samples from a total of 70 children and adult subjects were examined. Bacterial load was increased in both EoE and GERD relative to normal subjects. In subjects with EoE, load was increased regardless of treatment status or degree of mucosal eosinophilia compared with normal. Haemophilus was significantly increased in untreated EoE subjects as compared with normal subjects. Streptococcus was decreased in GERD subjects on proton pump inhibition as compared with normal subjects. Conclusions Diseases associated with mucosal eosinophilia are characterized by a different microbiome from that found in the normal mucosa. Microbiota may contribute to esophageal inflammation in EoE and GERD.
Journal of Pediatric Gastroenterology and Nutrition | 2011
Samantha A. Woodruff; Joanne C. Masterson; Sophie Fillon; Zachary D. Robinson; Glenn T. Furuta
Inflammatory bowel diseases (IBD) are characterized by the invasion of leukocytes into the intestinal mucosa. However, a mixed inflammatory picture is observed that includes neutrophils, lymphocytes, monocytes, and eosinophils. To this day, the role of eosinophils in health and in disease remains unclear. Investigations into their function stem primarily from allergic diseases, asthma, and parasitic infections. This makes it even more difficult to discern a role for the fascinating eosinophil in IBDs because, unlike the lung or the skin, eosinophils reside in normal intestinal mucosa and increase in disease states; consequently, an intricate system must regulate their migration and numbers. These granulocytes are equipped with the machinery to participate in gastrointestinal (GI) inflammation and in the susceptible microenvironment, they may initiate or perpetuate an inflammatory response. A significant body of literature characterizes eosinophils present in the GI microenvironment where they have the potential to interact with other resident cells, thus promoting intestinal remodeling, mucus production, epithelial barrier, cytokine production, angiogenesis, and neuropeptide release. A number of lines of evidence support both potential beneficial and deleterious roles of eosinophils in the gut. Although studies from the gut and other mucosal organs suggest eosinophils affect mucosal GI inflammation, definitive roles for eosinophils in IBDs await discovery.
Gut | 2015
Joanne C. Masterson; Eóin N. McNamee; Sophie Fillon; Lindsay Hosford; Rachel Harris; Shahan D. Fernando; Paul Jedlicka; Ryo Iwamoto; Elizabeth A. Jacobsen; Cheryl A. Protheroe; Holger K. Eltzschig; Sean P. Colgan; Makoto Arita; James J. Lee; Glenn T. Furuta
Objective Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Design Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Results Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Conclusions Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators.
Infection and Immunity | 2006
Carlos J. Orihuela; Sophie Fillon; S. Hope Smith-Sielicki; Karim C. El Kasmi; Geli Gao; Konstantinos Soulis; Avinash S. Patil; Peter J. Murray; Elaine Tuomanen
ABSTRACT Neuronal dysfunction can occur in the course of sepsis without meningitis. Sepsis-associated neuronal damage (SAND) was observed in the hippocampus within hours in experimental pneumococcal bacteremia. Intravascular challenge with purified bacterial cell wall recapitulated SAND. SAND persisted in PAFr−/− mice but was partially mitigated in mice lacking cell wall recognition proteins TLR2 and Nod2 and in mice overexpressing interleukin-10 (IL-10) in macrophages. Thus, cell wall drives SAND through IL-10-repressible inflammatory events. Treatment with CDP-choline ameliorated SAND, suggesting that it may be an effective adjunctive therapy to increase survival and reduce organ damage in sepsis.
PLOS ONE | 2012
Sophie Fillon; J. Kirk Harris; Brandie D. Wagner; Caleb J. Kelly; Mark J. Stevens; Wendy Moore; Rui Fang; Shauna Schroeder; Joanne C. Masterson; Charles E. Robertson; Norman R. Pace; Steven J. Ackerman; Glenn T. Furuta
A growing number of studies implicate the microbiome in the pathogenesis of intestinal inflammation. Previous work has shown that adults with esophagitis related to gastroesophageal reflux disease have altered esophageal microbiota compared to those who do not have esophagitis. In these studies, sampling of the esophageal microbiome was accomplished by isolating DNA from esophageal biopsies obtained at the time of upper endoscopy. The aim of the current study was to identify the esophageal microbiome in pediatric individuals with normal esophageal mucosa using a minimally invasive, capsule-based string technology, the Enterotest™. We used the proximal segment of the Enterotest string to sample the esophagus, and term this the “Esophageal String Test” (EST). We hypothesized that the less invasive EST would capture mucosal adherent bacteria present in the esophagus in a similar fashion as mucosal biopsy. EST samples and mucosal biopsies were collected from children with no esophageal inflammation (n = 15) and their microbiome composition determined by 16S rRNA gene sequencing. Microbiota from esophageal biopsies and ESTs produced nearly identical profiles of bacterial genera and were different from the bacterial contents of samples collected from the nasal and oral cavity. We conclude that the minimally invasive EST can serve as a useful device for study of the esophageal microbiome.