Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Guillot is active.

Publication


Featured researches published by Sophie Guillot.


Journal of Virology | 2000

Natural Genetic Exchanges between Vaccine and Wild Poliovirus Strains in Humans

Sophie Guillot; Valérie Caro; Nancy Stella Cuervo; Ekaterina A. Korotkova; Mariana Combiescu; Ana Persu; Andrei Aubert-Combiescu; Francis Delpeyroux; Radu Crainic

ABSTRACT In a previous study of poliovirus vaccine-derived strains isolated from patients with vaccine-associated paralytic poliomyelitis (VAPP) (9, 11), we reported that a high proportion (over 50%) of viruses had a recombinant genome. Most were intertypic vaccine/vaccine recombinants. However, some had restriction fragment length polymorphism (RFLP) profiles different from those of poliovirus vaccine strains. We demonstrate here that five such recombinants, of 88 VAPP strains examined, carried sequences of wild (nonvaccine) origin. To identify the parental wild donor of these sequences, we used RFLP profiles and nucleotide sequencing to look for similarity in the 3D polymerase-coding region of 61 wild, cocirculating poliovirus isolates (43 type 1, 16 type 2, and 2 type 3 isolates). In only one case was the donor identified, and it was a wild type 1 poliovirus. For the other four vaccine/wild recombinants, the wild parent could not be identified. The possibility that the wild sequences were of a non-poliovirus-enterovirus origin could not be excluded. Another vaccine/wild recombinant, isolated in Belarus from a VAPP case, indicated that the poliovirus vaccine/wild recombination is not an isolated phenomenon. We also found wild polioviruses (2 of 15) carrying vaccine-derived sequences in the 3′ moiety of their genome. All these results suggest that genetic exchanges with wild poliovirus and perhaps with nonpoliovirus enteroviruses, are also a natural means of evolution for poliovirus vaccine strains.


Virology | 1991

The natural genomic variability of poliovirus analyzed by a restriction fragment length polymorphism assay

Jean Balanant; Sophie Guillot; Candrea A; Francis Delpeyroux; Radu Crainic

The genomic variability of poliovirus was examined by analyzing the restriction fragment length polymorphism of a reverse-transcribed genomic fragment amplified by the polymerase chain reaction. The fragment was a 480-nucleotide sequence of the poliovirus genome coding for the N-terminal half of the capsid protein VP1, including antigenic site 1. The identification of a pair of generic primers flanking this fragment allowed its amplification in practically all the poliovirus strains tested so far (more than 150). By using the restriction enzymes HaeIII, DdeI, and HpaII, strain-specific restriction profiles could be generated for the amplified genomic fragment of each of the six reference poliovirus strains tested: one representative wild poliovirus of each of the three serotypes (P1/Mahoney, P2/Lansing, and P3/Finland/23127/84) and the three Sabin vaccine strains. When 21 poliovirus field isolates previously identified as Sabin vaccine-related were tested, they showed restriction profiles identical to those of the originating homotypic Sabin virus, demonstrating the conservation of these profiles during virus replication in humans. These profiles could thus be used as markers for Sabin-derived genotypes. To compare the distribution of poliovirus genotypes in nature before and after the introduction of poliovirus vaccines, the restriction profiles of the amplified genomic fragment of a total of 72 strains of various geographic and temporal origins were determined. Strains isolated before the introduction of polio vaccines displayed a wide diversity of genotypes. In contrast, wild (Sabin unrelated) strains isolated after vaccine introduction, during a single epidemic in a particular geographic area, showed identical or very similar restriction profiles, indicating the circulation of predominant regional genotypes. Our results indicate that the assay we developed for the analysis of the restriction fragment length polymorphism of the poliovirus genome may be used to identify and characterize poliovirus genotypes circulating in nature.


Journal of Virology | 2001

Genomic Features of Intertypic Recombinant Sabin Poliovirus Strains Excreted by Primary Vaccinees

Nancy Stella Cuervo; Sophie Guillot; Natalia Romanenkova; Mariana Combiescu; Andre Aubert-Combiescu; Mohamed Seghier; Valérie Caro; Radu Crainic; Francis Delpeyroux

ABSTRACT The trivalent oral poliomyelitis vaccine (OPV) contains three different poliovirus serotypes. It use therefore creates particularly favorable conditions for mixed infection of gut cells, and indeed intertypic vaccine-derived recombinants (VdRec) have been frequently found in patients with vaccine-associated paralytic poliomyelitis. Nevertheless, there have not been extensive searches for VdRec in healthy vaccinees following immunization with OPV. To determine the incidence of VdRec and their excretion kinetics in primary vaccinees, and to establish the general genomic features of the corresponding recombinant genomes, we characterized poliovirus isolates excreted by vaccinees following primary immunization with OPV. Isolates were collected from 67 children 2 to 60 days following vaccination. Recombinant strains were identified by multiple restriction fragment length polymorphism assays. The localization of junction sites in recombinant genomes was also determined. VdRec excreted by vaccinees were first detected 2 to 4 days after vaccination. The highest rate of recombinants was on day 14. The frequency of VdRec depends strongly on the serotype of the analyzed isolates (2, 53, and 79% of recombinant strains in the last-excreted type 1, 2, and 3 isolates, respectively). Particular associations of genomic segments were preferred in the recombinant genomes, and recombination junctions were found in the genomic region encoding the nonstructural proteins. Recombination junctions generally clustered in particular subgenomic regions that were dependent on the serotype of the isolate and/or on the associations of genomic segments in recombinants. Thus, VdRec are frequently excreted by vaccinees, and the poliovirus replication machinery requirements or selection factors appear to act in vivo to shape the features of the recombinant genomes.


Journal of General Virology | 2002

Natural genetic recombination between co-circulating heterotypic enteroviruses

Gabriela Oprisan; Mariana Combiescu; Sophie Guillot; Valérie Caro; Andrei Combiescu; Francis Delpeyroux; Radu Crainic

Natural recombination in poliovirus is a frequent phenomenon. In practice, whenever different genotypes have the opportunity to infect the same individual, a high proportion of viruses with recombinant genomes are excreted. To determine whether enteroviruses other than poliovirus can naturally produce viable virions with recombinant genomes, we studied the molecular features of two distant regions of the viral genomes - the VP1 coding region and the 3D polymerase coding region - of the echovirus serotypes associated with a large outbreak of aseptic meningitis. Nucleotide sequences of nine epidemic strains [belonging to echovirus serotypes 4 (E4), 7 (E7) and 30 (E30)] in the two genomic regions (300 nt of VP1 and 520 nt of 3D polymerase) were compared to prototype and field strains, and phylogenetic trees were generated from alignments. In the VP1 region, each of the three epidemic serotypes clustered with the homotypic prototype strain, whereas in the 3D polymerase region, E7 and E30 grouped as a single cluster, distant from the two corresponding prototype strains. This suggests that one of these two E7 and E30 strains has evolved through recombination with the other or that both have acquired the 3D polymerase coding region from a common ancestor. Our results suggest that such genetic recombinations between different echovirus serotypes are possible when multiple epidemic strains are circulating simultaneously.


PLOS Pathogens | 2007

Co-circulation and evolution of polioviruses and species C enteroviruses in a district of Madagascar.

Mala Rakoto-Andrianarivelo; Sophie Guillot; Jane Iber; Jean Balanant; Bruno Blondel; Franck B. Riquet; Javier Martin; Olen M. Kew; Bakolalao Randriamanalina; Lalatiana Razafinimpiasa; Dominique Rousset; Francis Delpeyroux

Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP) associated with type 2 vaccine-derived polioviruses (VDPVs) were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV) in the 5′-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C) in the 3′-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3Dpol coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity.


Clinical Microbiology and Infection | 2012

Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin

Nicolas Hegerle; A.-S. Paris; Delphine Brun; Gregory J. Dore; Elisabeth Njamkepo; Sophie Guillot; Nicole Guiso

Bordetella pertussis and Bordetella parapertussis are closely related bacterial agents of whooping cough. Whole-cell pertussis (wP) vaccine was introduced in France in 1959. Acellular pertussis (aP) vaccine was introduced in 1998 as an adolescent booster and was rapidly generalized to the whole population, changing herd immunity by specifically targeting the virulence of the bacteria. We performed a temporal analysis of all French B. pertussis and B. parapertussis isolates collected since 2000 under aP vaccine pressure, using pulsed-field gel electrophoresis (PFGE), genotyping and detection of expression of virulence factors. Particular isolates were selected according to their different phenotype and PFGE type and their characteristics were analysed using the murine model of respiratory infection and in vitro cell cytotoxic assay. Since the introduction of the aP vaccines there has been a steady increase in the number of B. pertussis and B. parapertussis isolates collected that are lacking expression of pertactin. These isolates seem to be as virulent as those expressing all virulence factors according to animal and cellular models of infection. Whereas wP vaccine-induced immunity led to a monomorphic population of B. pertussis, aP vaccine-induced immunity enabled the number of circulating B. pertussis and B. parapertussis isolates not expressing virulence factors to increase, sustaining our previous hypothesis.


Journal of Clinical Microbiology | 2011

Significant Finding of Bordetella holmesii DNA in Nasopharyngeal Samples from French Patients with Suspected Pertussis

Elisabeth Njamkepo; Stéphane Bonacorsi; Monique Debruyne; Sophie Gibaud; Sophie Guillot; Nicole Guiso

ABSTRACT Pertussis is routinely diagnosed with real-time PCR based on insertion sequence IS481, which is not specific for Bordetella pertussis. We conducted a retrospective study using real-time PCRs specific for Bordetella pertussis and for Bordetella holmesii on 177 samples positive for IS481 PCR. Bordetella holmesii DNA was detected in 20.3% samples collected from adolescents and adults.


Clinical and Vaccine Immunology | 2012

Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland.

Alex-Mikael Barkoff; Jussi Mertsola; Sophie Guillot; Nicole Guiso; Guy Berbers; Qiushui He

Despite extensive vaccinations, resurgence of pertussis has been reported in many countries ([9][1]). Recently, emergence of Bordetella pertussis isolates not expressing the vaccine antigen pertactin (Prn) or pertussis toxin was described in France, where surveillance of the clinical isolates has


Nature Structural & Molecular Biology | 1995

Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope.

Michelle W. Wien; David J. Filman; Enrico A. Stura; Sophie Guillot; Francis Delpeyroux; Radu Crainic; James M. Hogle

The crystal structure of the complex between the Fab fragment of C3, a neutralizing antibody for poliovirus, and a peptide corresponding to the viral epitope has been determined at 3.0 Å resolution. Although this antibody was originally raised to heat inactivated (noninfectious) virus particles, it strongly neutralizes the Mahoney strain of type 1 poliovirus. Eleven peptide residues are well-defined in the electron-density map and form two type I β-turns in series. At the carboxyl end, the peptide is bound snugly in the antibody-combining site and adopts a conformation that differs significantly from the structure of the corresponding residues in the virus. Structural comparisons between the peptide in the complex and the viral epitope suggests that on binding to infectious virions, this antibody may induce structural changes important for neutralization.


European Journal of Clinical Microbiology & Infectious Diseases | 2013

Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome.

A. Tizolova; Nicole Guiso; Sophie Guillot

The molecular diagnosis of pertussis and parapertussis syndromes is based on the detection of insertion sequences (IS) 481 and 1001, respectively. However, these IS are also detected in the genomes of various Bordetella species, such that they are not specific for either B. pertussis or B. parapertussis. Therefore, we screened the genome of recently circulating isolates of Bordetella species to compare the prevalence of IS481, IS1001 and, also IS1002 with previously published data and to sequence all IS detected. We also investigated whether the numbers of IS481 and IS1001 copies vary in recently circulating isolates of the different Bordetella species. We used the polymerase chain reaction (PCR) method for screening the genome of circulating isolates and to prepare the fragments for sequencing. We used Southern blotting and quantitative real-time PCR for quantification of the numbers of IS. We found no significant diversity in the sequences of the IS harboured in the genomes of the Bordetella isolates screened, except for a 71-nucleotide deletion from IS1002 in B. bronchiseptica. The IS copy numbers in the genome of recently circulating isolates were similar to those in reference strains. Our results confirm that biological diagnosis targeting the IS481 and IS1001 elements are not specific and detect the species B. pertussis, B. holmesii and B. bronchiseptica (IS481), and B. parapertussis and B. bronchiseptica (IS1001).

Collaboration


Dive into the Sophie Guillot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria-Magdalena Georgescu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alex-Mikael Barkoff

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge