Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Réhault-Godbert is active.

Publication


Featured researches published by Sophie Réhault-Godbert.


BMC Genomics | 2010

Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg

Vincent Jonchère; Sophie Réhault-Godbert; Christelle Hennequet-Antier; Cédric Cabau; V. Sibut; Larry A. Cogburn; Yves Nys; Joël Gautron

BackgroundAs uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshells remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the eggs natural defenses.ResultsOur 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hens uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference). The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO) analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in the acellular uterine fluid where eggshell formation takes place.ConclusionsOur original study provides the first detailed description of the chicken uterus transcriptome during formation of the eggshell. We have discovered a cache of about 600 functional genes and identified a large number of encoded proteins secreted into uterine fluid for fabrication of the eggshell and chemical protection of the egg. Some of these uterine genes could prove useful as biological markers for genetic improvement of phenotypic traits (i.e., egg and eggshell quality).


Antimicrobial Agents and Chemotherapy | 2010

Purification and Characterization of Avian β-Defensin 11, an Antimicrobial Peptide of the Hen Egg

Virginie Hervé-Grépinet; Sophie Réhault-Godbert; Valérie Labas; Thierry Magallon; Chrystelle Derache; Marion Lavergne; Joël Gautron; Anne-Christine Lalmanach; Yves Nys

ABSTRACT Natural antimicrobial peptides are present in different compartments (eggshell, egg white, and vitelline membranes) of the hen egg and are expected to be involved in the protection of the embryo during its development and to contribute to the production of pathogen-free eggs. In the present study, we used vitelline membranes from hen (Gallus gallus) eggs as a source of avian β-defensin 11 (AvBD11). A purification scheme using affinity chromatography and reverse-phase chromatography was developed. Purified AvBD11 was analyzed by a combination of mass spectrometry approaches to characterize its primary sequence and structure. A monoisotopic molecular species at [M + H]+ of 9,271.56 Da was obtained, and its N- and C-terminal sequences were determined. We also examined posttranslational modifications and identified the presence of 6 internal disulfide bonds. AvBD11 was found to exhibit antimicrobial activity toward both Gram-positive and Gram-negative bacteria.


Journal of Biological Chemistry | 2013

Ovalbumin-related Protein X Is a Heparin-binding Ov-Serpin Exhibiting Antimicrobial Activities

Sophie Réhault-Godbert; Valérie Labas; Emmanuelle Helloin; Virginie Hervé-Grépinet; Cindy Slugocki; Magali Berges; Marie-Christine Bourin; Aurélien Brionne; Jean-Claude Poirier; Joël Gautron; Franck Coste; Yves Nys

Background: Ovalbumin-related protein X (OVAX) is an uncharacterized ovalbumin-serpin. Results: This egg white-specific serpin lacks protease inhibitory activity, but unlike its ovalbumin homolog, OVAX exhibits antibacterial properties, partly through its heparin-binding site(s). Conclusion: OVAX, a non-inhibitory serpin is a heparin-binding molecule with antibacterial activity. Significance: OVAX participates in egg defense and constitutes a natural agent against Listeria and Salmonella. Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys367-His368 is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions.


Journal of Agricultural and Food Chemistry | 2011

Antimicrobial Potential of Egg Yolk Ovoinhibitor, a Multidomain Kazal-like Inhibitor of Chicken Egg

Marie Bourin; Joël Gautron; Magali Berges; Sylvie Attucci; Gwenaelle Le Blay; Valérie Labas; Yves Nys; Sophie Réhault-Godbert

Chicken egg ovoinhibitor is a multidomain Kazal-type serine protease inhibitor with unknown function. Comparison of expression between different tissues indicated that ovoinhibitor is highly expressed in the magnum and liver followed by the uterus, which secrete egg white, egg yolk, and eggshell precursors, respectively. The results also revealed that ovoinhibitor expression is increased in the liver during sexual maturation followed by a subsequent decrease in mature hens. Ovoinhibitor was purified from the egg yolk plasma from nonfertilized eggs using two consecutive affinity chromatographies and gel filtration. Purified egg yolk ovoinhibitor was shown to inhibit trypsin and subtilisin. It was shown that purified egg yolk ovoinhibitor exhibited antimicrobial activities against Bacillus thuringiensis . The results suggest that this anti-protease plays a significant role in antibacterial egg defense against Bacillus spp., preventing contamination of table eggs (nonfertilized eggs) and protecting the chick embryo (fertilized eggs).


Improving the Safety and Quality of Eggs and Egg Products#R##N#Egg Chemistry, Production and Consumption | 2011

Molecules involved in chemical defence of the chicken egg.

Sophie Réhault-Godbert; Virginie Hervé-Grépinet; Joël Gautron; Cédric Cabau; Yves Nys; Maxwell T. Hincke

Abstract: Molecular egg defence is ensured by all the proteins displaying antimicrobial activity or contributing to the overall homeostasis of the egg. With the development of transcriptomic and proteomic approaches, many proteins have been newly identified in chicken egg, the functions of which have not yet been explored. To identify candidates potentially involved in egg defensive mechanisms, we examined protein sequences for specific domains and in some cases searched for homology with their mammalian counterparts. This chapter gives an overview of the peptides and proteins potentially participating in the chemical defence of the egg.


Journal of Biological Chemistry | 2014

Three-dimensional NMR Structure of Hen Egg Gallin (Chicken Ovodefensin) Reveals a New Variation of the β-Defensin Fold

Virginie Hervé; Hervé Meudal; Valérie Labas; Sophie Réhault-Godbert; Joël Gautron; Magali Berges; Nicolas Guyot; Agnès F. Delmas; Yves Nys; Céline Landon

Background: Ovodefensins are small peptides from eggs, related to avian antimicrobial defensins. Results: The first three-dimensional structure of ovodefensins (gallin) is solved, and its antimicrobial properties are screened. Conclusion: Gallin adopts a β-defensin fold, with significant variations. Its antibacterial spectrum was restricted to E. coli. Significance: The first structural features may be related to E. coli specificity and/or other yet unknown functions. Gallin is a 41-residue protein, first identified as a minor component of hen egg white and found to be antimicrobial against Escherichia coli. Gallin may participate in the protection of the embryo during its development in the egg. Its sequence is related to antimicrobial β-defensin peptides. In the present study, gallin was chemically synthesized 1) to further investigate its antimicrobial spectrum and 2) to solve its three-dimensional NMR structure and thus gain insight into structure-function relationships, a prerequisite to understanding its mode(s) of action. Antibacterial assays confirmed that gallin was active against Escherichia coli, but no additional antibacterial activity was observed against the other Gram-positive or Gram-negative bacteria tested. The three-dimensional structure of gallin, which is the first ovodefensin structure to have been solved to date, displays a new five-stranded arrangement. The gallin three-dimensional fold contains the three-stranded antiparallel β-sheet and the disulfide bridge array typical of vertebrate β-defensins. Gallin can therefore be unambiguously classified as a β-defensin. However, an additional short two-stranded β-sheet reveals that gallin and presumably the other ovodefensins form a new structural subfamily of β-defensins. Moreover, gallin and the other ovodefensins calculated by homology modeling exhibit atypical hydrophobic surface properties, compared with the already known vertebrate β-defensins. These specific structural features of gallin might be related to its restricted activity against E. coli and/or to other yet unknown functions. This work provides initial understanding of a critical sequence-structure-function relationship for the ovodefensin family.


Journal of Food Protection | 2010

Effect of Temperature and Time of Storage on Protein Stability and Anti-Salmonella Activity of Egg White

Sophie Réhault-Godbert; Florence Baron; Sandrine Mignon-Grasteau; Valérie Labas; Michel Gautier; Maxwell T. Hincke; Yves Nys

Hen egg white contains numerous molecules of interest for human health, including antimicrobial proteins. Little information is available concerning changes in the antimicrobial activity of egg white during storage; therefore, we analyzed the potential of egg white to inhibit growth of Salmonella enterica serovar Enteritidis following storage at 4, 20, or 37°C for 30 days prior to inoculation. Egg white displayed higher anti-Salmonella activity after a few days of storage at 20 and 37°C. The rate of increase in activity was more rapid and pronounced at the higher temperature. However, egg white stored at 20°C retained higher antimicrobial activity than that of egg white stored at 4 or 37°C, when the entire storage period is taken in consideration. In contrast, storage of egg at 37°C for more than 14 days reduced the bacteriostatic potential of egg white. Statistical analyses revealed a correlation between pH and the antimicrobial activity of egg white. Moreover, diminished antimicrobial activity was associated with degradation of ovalbumin and ovotransferrin, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. However, the fluctuation in anti-Salmonella activity of egg white could not be related to any variation of trypsin-like, chymotrypsin-like, or gelatinolytic activities that potentially account for degradation of antimicrobial egg white proteins.


BMC Microbiology | 2013

Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities

Larbi Bedrani; Emmanuelle Helloin; Nicolas Guyot; Sophie Réhault-Godbert; Yves Nys

BackgroundEgg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens.ResultsThe difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed.ConclusionsAltogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs.


Journal of Agricultural and Food Chemistry | 2008

Identification and characterization of the precursor of chicken matrix metalloprotease 2 (pro-MMP-2) in hen egg.

Sophie Réhault-Godbert; Joël Gautron; Labas; Belghazi M; Yves Nys

Using zymography and mass spectrometry, we identified for the first time the precursor of chicken matrix metalloprotease 2 (pro-MMP-2) as a complex with TIMP-2 (tissue inhibitor of metalloproteinases) in egg white and yolk. Real-time polymerase chain reaction confirmed that MMP-2 and its inhibitors TIMP-2 and TIMP-3 were expressed all along the oviduct and in the liver of laying hens. We also demonstrated that the processing of pro-MMP-2 into mature MMP-2 by serine proteases does not occur in vivo, although purified pro-MMP-2 undergoes proteolytic maturation by these proteases in vitro. Moreover, the relative pro-MMP-2 activity assessed by gelatin zymography was shown to decrease in egg white during the storage of unfertilized or fertilized eggs. However, the mature form of 62 kDa MMP-2 could not be detected. The fact that MMP-2 is found as a proform in fresh eggs suggests that the activity of this metalloprotease is regulated under specific conditions during embryonic development.


Scientific Reports | 2016

Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

Nicolas Guyot; Valérie Labas; Grégoire Harichaux; Magali Chessé; Jean-Claude Poirier; Yves Nys; Sophie Réhault-Godbert

The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.

Collaboration


Dive into the Sophie Réhault-Godbert's collaboration.

Top Co-Authors

Avatar

Yves Nys

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joël Gautron

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Guyot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Valérie Labas

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Magali Berges

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florence Baron

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie Bourin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mylène Da Silva

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélien Brionne

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge