Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Schwartz is active.

Publication


Featured researches published by Sophie Schwartz.


Nature Neuroscience | 2005

The voices of wrath: brain responses to angry prosody in meaningless speech

Didier Maurice Grandjean; David Sander; Gilles Pourtois; Sophie Schwartz; Mohamed L. Seghier; Klaus R. Scherer; Patrik Vuilleumier

We report two functional magnetic resonance imaging experiments showing enhanced responses in human middle superior temporal sulcus for angry relative to neutral prosody. This emotional enhancement was voice specific, unrelated to isolated acoustic amplitude or frequency cues in angry prosody, and distinct from any concomitant task-related attentional modulation. Attention and emotion seem to have separate effects on stimulus processing, reflecting a fundamental principle of human brain organization shared by voice and face perception.


Brain | 2010

Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping

Vincent Xavier Verdon; Sophie Schwartz; Karl-Olof Lövblad; Claude-Alain Hauert; Patrik Vuilleumier

Spatial neglect is a perplexing neuropsychological syndrome, in which patients fail to detect (and/or respond to) stimuli located contralaterally to their (most often right) hemispheric lesion. Neglect is characterized by a wide heterogeneity, and a role for multiple components has been suggested, but the exact nature of the critical components remains unclear. Moreover, many different lesion sites have been reported, leading to enduring controversies about the relative contribution of different cortical and/or subcortical brain regions. Here we report a systematic anatomo-functional study of 80 patients with a focal right hemisphere stroke, who were examined by a series of neuropsychological tests assessing different clinical manifestations of neglect. We first performed a statistical factorial analysis of their behavioural performance across all tests, in order to break down neglect symptoms into coherent profiles of co-varying deficits. We then examined the neural correlates of these distinct neglect profiles using a statistical voxel-based lesion-symptom mapping method that correlated the anatomical extent of brain damage with the relative severity of deficits along the different profiles in each patient. Our factorial analysis revealed three main factors explaining 82% of the total variance across all neglect tests, which suggested distinct components related to perceptive/visuo-spatial, exploratory/visuo-motor, and allocentric/object-centred aspects of spatial neglect. Our anatomical voxel-based lesion-symptom mapping analysis pointed to specific neural correlates for each of these components, including the right inferior parietal lobule for the perceptive/visuo-spatial component, the right dorsolateral prefrontal cortex for the exploratory/visuo-motor component, and deep temporal lobe regions for the allocentric/object-centred component. By contrast, standard anatomical overlap analysis indicated that subcortical damage to paraventricular white matter tracts was associated with severe neglect encompassing several tests. Taken together, our results provide new support to the view that the clinical manifestations of hemispatial neglect might reflect a combination of distinct components affecting different domains of spatial cognition, and that intra-hemispheric disconnection due to white matter lesions might produce severe neglect by impacting on more than one functional domain.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination

Sophie Schwartz; Pierre Maquet; Chris Frith

Visual texture discrimination has been shown to induce long-lasting behavioral improvement restricted to the trained eye and trained location in visual field [Karni, A. & Sagi, D. (1991) Proc. Natl. Acad. Sci. USA 88, 4966–4970]. We tested the hypothesis that such learning involves durable neural modifications at the earliest cortical stages of the visual system, where eye specificity, orientation, and location information are mapped with highest resolution. Using functional magnetic resonance imaging in humans, we measured neural activity 24 h after a single session of intensive monocular training on visual texture discrimination, performed in one visual quadrant. Within-subject comparisons between trained and untrained eye for targets presented within the same quadrant revealed higher activity in a corresponding retinotopic area of visual cortex. Functional connectivity analysis showed that these learning-dependent changes were not associated with an increased engagement of other brain areas remote from early visual cortex. We suggest that these new data are consistent with recent proposals that the cellular mechanisms underlying this type of perceptual learning may involve changes in local connections within primary visual cortex. Our findings provide a direct demonstration of learning-dependent reorganization at early processing stages in the visual cortex of adult humans.


Journal of The International Neuropsychological Society | 2006

Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping

Juliana V. Baldo; Sophie Schwartz; David P. Wilkins; Nina F. Dronkers

Category and letter fluency tasks have been used to demonstrate psychological and neurological dissociations between semantic and phonological aspects of word retrieval. Some previous neuroimaging and lesion studies have suggested that category fluency (semantic-based word retrieval) is mediated primarily by temporal cortex, while letter fluency (letter-based word retrieval) is mediated primarily by frontal cortex. Other studies have suggested that both letter and category fluency are mediated by frontal cortex. We tested these hypotheses using voxel-based lesion symptom mapping (VLSM) in a group of 48 left-hemisphere stroke patients. VLSM maps revealed that category and letter fluency deficits correlate with lesions in temporal and frontal cortices, respectively. Other regions, including parietal cortex, were significantly implicated in both tasks. Our findings are therefore consistent with the hypothesis that temporal cortex subserves word retrieval constrained by semantics, whereas frontal regions are more critical for strategic word retrieval constrained by phonology.


Neurology | 2001

Emotional facial expressions capture attention

Patrik Vuilleumier; Sophie Schwartz

Objective: To determine whether the emotional significance of stimuli can influence spatial attention. Background: Motivational and emotional factors may affect attention toward stimuli. However, this has never been examined in brain-damaged patients who present with unilateral inattention due to left spatial neglect. Methods: The authors studied three patients with chronic left neglect and visual extinction after right parietal stroke. Shapes or faces with neutral, happy, or angry expressions were briefly presented in the right, left, or both visual fields. On unilateral trials, the patients detected all stimuli equally on both sides. On bilateral trials, they extinguished faces in the contralesional field much less often than shapes, and faces with happy or angry facial expressions much less than faces with a neutral expression. Conclusion: Facial features and emotional expressions can be analyzed despite lying on the unattended side, and may influence the spatial distribution of attention. These findings support the view that attention is controlled by neural mechanisms involving not only frontoparietal areas but also limbic components in cingulate cortex and amygdala, which may interact with ventral visual areas in the temporal lobe to detect affective value and prioritize attention to salient stimuli.


NeuroImage | 2005

Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody

David Sander; Didier Maurice Grandjean; Gilles Pourtois; Sophie Schwartz; Mohamed L. Seghier; Klaus R. Scherer; Patrik Vuilleumier

Multiple levels of processing are thought to be involved in the appraisal of emotionally relevant events, with some processes being engaged relatively independently of attention, whereas other processes may depend on attention and current task goals or context. We conducted an event-related fMRI experiment to examine how processing angry voice prosody, an affectively and socially salient signal, is modulated by voluntary attention. To manipulate attention orthogonally to emotional prosody, we used a dichotic listening paradigm in which meaningless utterances, pronounced with either angry or neutral prosody, were presented simultaneously to both ears on each trial. In two successive blocks, participants selectively attended to either the left or right ear and performed a gender-decision on the voice heard on the target side. Our results revealed a functional dissociation between different brain areas. Whereas the right amygdala and bilateral superior temporal sulcus responded to anger prosody irrespective of whether it was heard from a to-be-attended or to-be-ignored voice, the orbitofrontal cortex and the cuneus in medial occipital cortex showed greater activation to the same emotional stimuli when the angry voice was to-be-attended rather than to-be-ignored. Furthermore, regression analyses revealed a strong correlation between orbitofrontal regions and sensitivity on a behavioral inhibition scale measuring proneness to anxiety reactions. Our results underscore the importance of emotion and attention interactions in social cognition by demonstrating that multiple levels of processing are involved in the appraisal of emotionally relevant cues in voices, and by showing a modulation of some emotional responses by both the current task-demands and individual differences.


NeuroImage | 2011

Decoding brain states from fMRI connectivity graphs

Jonas Richiardi; Hamdi Eryilmaz; Sophie Schwartz; Patrik Vuilleumier; Dimitri Van De Ville

Functional connectivity analysis of fMRI data can reveal synchronised activity between anatomically distinct brain regions. Here, we extract the characteristic connectivity signatures of different brain states to perform classification, allowing us to decode the different states based on the functional connectivity patterns. Our approach is based on polythetic decision trees, which combine powerful discriminative ability with interpretability of results. We also propose to use ensemble of classifiers within specific frequency subbands, and show that they bring systematic improvement in classification accuracy. Exploiting multi-band classification of connectivity graphs is also proposed, and we explain theoretical reasons why the technique could bring further improvement in classification performance. The choice of decision trees as classifier is shown to provide a practical way to identify a subset of connections that distinguishes best between the conditions, permitting the extraction of very compact representations for differences between brain states, which we call discriminative graphs. Our experimental results based on strict train/test separation at all stages of processing show that the method is applicable to inter-subject brain decoding with relatively low error rates for the task considered.


Neuroreport | 2001

Beware and be aware: capture of spatial attention by fear-related stimuli in neglect

Patrik Vuilleumier; Sophie Schwartz

Stimuli with threat significance may be privileged in summoning attention, allowing fast detection even outside the field of attention. We studied patients with unilateral neglect and visual extinction, who usually remain unaware of contralesional stimuli presented together with concurrent ipsilesional stimuli, to learn whether emotional stimuli might differentially be affected by contralesional extinction. Pictures of spiders or flowers with similar features were presented in right, left, or both fields. On bilateral trials, the patients detected emotional stimuli (spiders) on the left side much more often than neutral pictures (flowers). While mechanisms of spatial attention are impaired after parietal damage in neglect patients, intact visual pathways to the ventral temporal lobe and amygdala might still mediate distinct mechanisms of emotional attention.


The Journal of Neuroscience | 2009

Dynamic Changes in Brain Activity during Prism Adaptation

Jacques Luauté; Sophie Schwartz; Yves Rossetti; Mona Spiridon; G. Rode; Dominique Boisson; Patrik Vuilleumier

Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.


Trends in Cognitive Sciences | 2002

Sleep imaging and the neuro-psychological assessment of dreams

Sophie Schwartz; Pierre Maquet

Recent neuroimaging studies show that human rapid-eye-movement (REM) sleep is characterized by a specific pattern of regional brain activity. Although this is usually interpreted in relation to physiological and cellular mechanisms, the specific regional distribution of brain activity during REM sleep might also be linked to specific dream features. Remarkably, several bizarre features of normal dreams have similarities with well-known neuropsychological syndromes after brain damage, such as delusional misidentifications for faces and places. We propose that neuropsychological analysis of dream content might offer new ways of interpreting neuroimaging maps of sleep, and make specific predictions for future neuroimaging studies.

Collaboration


Dive into the Sophie Schwartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge