Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Tamareille is active.

Publication


Featured researches published by Sophie Tamareille.


PLOS ONE | 2013

Apolipoprotein A-I Is a Potential Mediator of Remote Ischemic Preconditioning

Pierre Hibert; Delphine Prunier-Mirebeau; Olivia Beseme; Maggy Chwastyniak; Sophie Tamareille; Delphine Lamon; Alain Furber; Florence Pinet; Fabrice Prunier

Background Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach. Methods and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5′) or 10-min (RIPC 10′) reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10′. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI). Conclusions RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Myocardial reperfusion injury management: erythropoietin compared with postconditioning

Sophie Tamareille; Nehmat Ghaboura; Frederic Treguer; Dalia Khachman; Anne Croué; Daniel Henrion; Alain Furber; Fabrice Prunier

Ischemic postconditioning (IPost) and erythropoietin (EPO) have been shown to attenuate myocardial reperfusion injury using similar signaling pathways. The aim of this study was to examine whether EPO is as effective as IPost in decreasing postischemic myocardial injury in both Langendorff-isolated-heart and in vivo ischemia-reperfusion rat models. Rat hearts were subjected to 25 min ischemia, followed by 30 min or 2 h of reperfusion in the isolated-heart study. Rats underwent 45 min ischemia, followed by 24 h of reperfusion in the in vivo study. In both studies, the control group (n=12; ischemia-reperfusion only) was compared with IPost (n=16; 3 cycles of 10 s reperfusion/10 s ischemia) and EPO (n=12; 1,000 IU/kg) at the onset of reperfusion. The following resulted. First, in the isolated hearts, IPost or EPO significantly improved postischemic recovery of left ventricular developed pressure. EPO induced better left ventricular developed pressure than IPost at 30 min of reperfusion (73.18+/-10.23 vs. 48.11+/-7.92 mmHg, P<0.05). After 2 h of reperfusion, the infarct size was significantly lower in EPO-treated hearts compared with IPost and control hearts (14.36+/-0.60%, 19.11+/-0.84%, and 36.21+/-4.20% of the left ventricle, respectively; P<0.05). GSK-3beta phosphorylation, at 30 min of reperfusion, was significantly higher with EPO compared with IPost hearts. Phosphatidylinositol 3-kinase and ERK1/2 inhibitors abolished both EPO- and IPost-mediated cardioprotection. Second, in vivo, IPost and EPO induced an infarct size reduction compared with control (40.5+/-3.6% and 28.9+/-3.1%, respectively, vs. 53.7+/-4.3% of the area at risk; P<0.05). Again, EPO decreased significantly more infarct size and transmurality than IPost (P<0.05). In conclusion, with the use of our protocols, EPO showed better protective effects than IPost against reperfusion injury through higher phosphorylation of GSK-3beta.


Journal of Molecular and Cellular Cardiology | 2013

Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning

Hussein Kalakech; Sophie Tamareille; Sandrine Pons; Diane Godin-Ribuot; Peter Carmeliet; Alain Furber; Valérie Martin; Alain Berdeaux; Bijan Ghaleh; Fabrice Prunier

Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This studys aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cds inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Microparticle release in remote ischemic conditioning mechanism

Julien Jeanneteau; Pierre Hibert; Maria Martinez; Simon Tual-Chalot; Sophie Tamareille; Alain Furber; Ramaroson Andriantsitohaina; Fabrice Prunier

Remote ischemic conditioning (RCond) induced by short periods of ischemia and reperfusion of an organ or tissue before myocardial reperfusion is an attractive strategy of cardioprotection in the context of acute myocardial infarction. Nonetheless, its mechanism remains unknown. A humoral factor appears to be involved, although its identity is currently unknown. We hypothesized that the circulating microparticles (MPs) are the link between the remote tissue and the heart. MPs from rats and healthy humans undergoing RCond were characterized. In rats, RCond was induced by 10 min of limb ischemia. In humans, RCond was induced by three cycles of 5-min inflation and 5-min deflation of a blood-pressure cuff. In the second part of the study, rats underwent 40 min myocardial ischemia followed by 2 h reperfusion. Infarct size was measured and compared among three groups of rats: 1) myocardial infarction alone (MI) (n = 6); 2) MI + RCond started 20 min after coronary ligation (n = 6); and 3) MI + injection of RCond-derived rat MPs (MI + MPs) (n = 5). MPs from endothelial cells (CD54(+) and CD146(+) for rats and humans, respectively) and procoagulant MPs (Annexin V(+)) markedly increased after RCond, both in rats and humans. RCond reduced infarct size (24.4 ± 5.9% in MI + RCond vs. 54.6 ± 4.7% in MI alone; P < 0.01). Infarct size did not decrease in MI + MPs compared with MI alone (50.2 ± 6.4% vs. 54.6 ± 4.7%, not significantly different). RCond increased endothelium-derived and procoagulant MPs in both rats and humans. However, MP release did not appear to be a biological vector of RCond in our model.


PLOS ONE | 2014

RISK and SAFE Signaling Pathway Involvement in Apolipoprotein A-I-Induced Cardioprotection

Hussein Kalakech; Pierre Hibert; Delphine Prunier-Mirebeau; Sophie Tamareille; Franck Letournel; Laurent Macchi; Florence Pinet; Alain Furber; Fabrice Prunier

Recent findings indicate that apolipoprotein A-I (ApoA-I) may be a protective humoral mediator involved in remote ischemic preconditioning (RIPC). This study sought to determine if ApoA-I mediates its protective effects via the RISK and SAFE signaling pathways implicated in RIPC. Wistar rats were allocated to one of the following groups. Control: rats were subjected to myocardial ischemia/reperfusion (I/R) without any further intervention; RIPC: four cycles of limb I/R were applied prior to myocardial ischemia; ApoA-I: 10 mg/Kg of ApoA-I were intravenously injected prior to myocardial ischemia; ApoA-I + inhibitor: pharmacological inhibitors of RISK/SAFE pro-survival kinase (Akt, ERK1/2 and STAT-3) were administered prior to ApoA-I injection. Infarct size was significantly reduced in the RIPC group compared to Control. Similarly, ApoA-I injection efficiently protected the heart, recapitulating RIPC-induced cardioprotection. The ApoA-I protective effect was associated with Akt and GSK-3β phosphorylation and substantially inhibited by pretreatment with Akt and ERK1/2 inhibitors. Pretreatment with ApoA-I in a rat model of I/R recapitulates RIPC-induced cardioprotection and shares some similar molecular mechanisms with those of RIPC-involved protection of the heart.


PLOS ONE | 2014

Modifications in Rat Plasma Proteome after Remote Ischemic Preconditioning (RIPC) Stimulus: Identification by a SELDI-TOF-MS Approach

Pierre Hibert; Delphine Prunier-Mirebeau; Olivia Beseme; Maggy Chwastyniak; Sophie Tamareille; Florence Pinet; Fabrice Prunier

Remote ischemic preconditioning’s (RIPC) ability to render the myocardium resistant to subsequent prolonged ischemia is now clearly established in different species, including humans. Strong evidence suggests that circulating humoral mediators play a key role in signal transduction, but their identities still need to be established. Our study sought to identify potential circulating RIPC mediators using a proteomic approach. Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5′) or 10-min (RIPC 10′) reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were isolated for proteomic analysis using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). A total of seven proteins, including haptoglobin and transthyretin, were detected as up- or down-regulated in response to RIPC. These proteins had previously been identified as associated with organ protection, anti-inflammation, and various cellular and molecular responses to ischemia. In conclusion, this study indicates that RIPC results in significant modulations of plasma proteome.


Shock | 2013

Endoplasmic reticulum stress pathway involvement in local and remote myocardial ischemic conditioning.

Grall S; Prunier-Mirebeau D; Sophie Tamareille; Mateus; Delphine Lamon; Furber A; Fabrice Prunier

ABSTRACT Remote ischemic perconditioning (RIPer) and local ischemic postconditioning (IPost) are promising methods to decrease ischemia-reperfusion injury. We tested whether these two methods were effective in reducing infarct size through activation of endoplasmic reticulum (ER) stress response, a potential survival pathway. Rats exposed to myocardial ischemia-reperfusion were allocated to one of six groups: control, no intervention at myocardial reperfusion; IPost, three cycles of 10-s coronary artery occlusion followed by 10-s reperfusion applied at the onset of myocardial reperfusion; RIPer, 10-min limb ischemia followed by 10-min reperfusion initiated during coronary artery occlusion; control + 4-PBA, injection of ER stress inhibitor 4-phenylbutyrate (4-PBA) 1 h before coronary occlusion; IPost + 4-PBA; and RIPer + 4-PBA. Infarct size was significantly reduced in IPost and RIPer groups (33.32% ± 3.65% and 21.86% ± 3.98%, respectively) compared with the control group (54.86% ± 6.01%, P < 0.05). Western blot analysis of GRP78 (glucose-regulated protein) level and cleaved activating transcription factor 6, two ER stress markers, demonstrated an enhancement of ER stress response in IPost group but not in RIPer group at 15-min reperfusion. Furthermore, 4-PBA abolished cardioprotection induced by IPost (infarct size 53.75 ± 3.49 vs. 33.32 ± 3.65%, P < 0.05) but not by RIPer (28.80 ± 10.45% vs. 21.86 ± 3.98%, not statistically significant). GRP78 and cleaved activating transcription factor 6 levels were no longer increased in IPost group after 4-PBA. These findings point to a role for ER stress response in cardioprotection against reperfusion injury in IPost but not RIPer, suggesting differences in cardioprotective mechanisms between local and remote conditioning.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Central Role of P2Y6 UDP Receptor in Arteriolar Myogenic Tone

Gilles Kauffenstein; Sophie Tamareille; Fabrice Prunier; Charlotte Roy; Audrey Ayer; Bertrand Toutain; Marie Billaud; Brant E. Isakson; Linda Grimaud; Laurent Loufrani; Pascal Rousseau; Pierre Abraham; Vincent Procaccio; Hannah Monyer; Cor de Wit; Jean-Marie Boeynaems; Bernard Robaye; Brenda R. Kwak; Daniel Henrion

Objective—Myogenic tone (MT) of resistance arteries ensures autoregulation of blood flow in organs and relies on the intrinsic property of smooth muscle to contract in response to stretch. Nucleotides released by mechanical strain on cells are responsible for pleiotropic vascular effects, including vasoconstriction. Here, we evaluated the contribution of extracellular nucleotides to MT. Approach and Results—We measured MT and the associated pathway in mouse mesenteric resistance arteries using arteriography for small arteries and molecular biology. Of the P2 receptors in mouse mesenteric resistance arteries, mRNA expression of P2X1 and P2Y6 was dominant. P2Y6 fully sustained UDP/UTP-induced contraction (abrogated in P2ry6−/− arteries). Preventing nucleotide hydrolysis with the ectonucleotidase inhibitor ARL67156 enhanced pressure-induced MT by 20%, whereas P2Y6 receptor blockade blunted MT in mouse mesenteric resistance arteries and human subcutaneous arteries. Despite normal hemodynamic parameters, P2ry6−/− mice were protected against MT elevation in myocardial infarction–induced heart failure. Although both P2Y6 and P2Y2 receptors contributed to calcium mobilization, P2Y6 activation was mandatory for RhoA–GTP binding, myosin light chain, P42–P44, and c-Jun N-terminal kinase phosphorylation in arterial smooth muscle cells. In accordance with the opening of a nucleotide conduit in pressurized arteries, MT was altered by hemichannel pharmacological inhibitors and impaired in Cx43+/− and P2rx7−/− mesenteric resistance arteries. Conclusions—Signaling through P2 nucleotide receptors contributes to MT. This mechanism encompasses the release of nucleotides coupled to specific autocrine/paracrine activation of the uracil nucleotide P2Y6 receptor and may contribute to impaired tissue perfusion in cardiovascular diseases.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Speckle tracking imaging improves in vivo assessment of EPO-induced myocardial salvage early after ischemia-reperfusion in rats

Frederic Treguer; Erwan Donal; Sophie Tamareille; Nehmat Ghaboura; Geneviève Derumeaux; Alain Furber; Fabrice Prunier

A noninvasive assessment of infarct size and transmural extension of myocardial infarction (TEMI) is fundamental in experimental models of ischemia-reperfusion. Conventional echocardiography parameters are limited in this purpose. This study was designed to examine whether speckle tracking imaging can be used in a rat model of ischemia-reperfusion to accurately detect the reduction of infarct size and TEMI induced by erythropoietin (EPO) as early as 24 h after reperfusion. Rats were randomly assigned to one of three groups: myocardial infarction (MI)-control group, 45 min ischemia followed by 24 h of reperfusion; MI-EPO group, similar surgery with a single bolus of EPO administered at the onset of reperfusion; and sham-operated group. Short-axis two-dimensional echocardiography was performed after reperfusion. Global radial (GS(r)) and circumferential (GS(cir)) strains were compared with infarct size and TEMI assessed after triphenyltetrazolium chloride staining. As a result, ejection fraction, shortening fraction, GS(r), and GS(cir) significantly correlated to infarct size, whereas only GS(r) and GS(cir) significantly correlated to TEMI. EPO significantly decreased infarct size (30.8 + or - 3.5 vs. 56.2 + or - 5.7% in MI-control, P < 0.001) and TEMI (0.37 + or - 0.05 vs. 0.77 + or - 0.05 in MI-control, P < 0.001). None of the conventional echocardiography parameters was significantly different between the MI-EPO and MI-control groups, whereas GS(r) was significantly higher in the MI-EPO group (29.1 + or - 4.7 vs. 16.4 + or - 3.3% in MI-control; P < 0.05). Furthermore, GS(cir) and GS(r) appeared to be the best parameters to identify a TEMI >0.75 24 h after reperfusion. In conclusion, these findings demonstrate the usefulness of speckle tracking imaging in the early evaluation of a cardioprotective strategy in a rat model of ischemia-reperfusion.


Journal of the American Heart Association | 2016

Metabolic Signature of Remote Ischemic Preconditioning Involving a Cocktail of Amino Acids and Biogenic Amines

Juan Manuel Chao de la Barca; Oussama Bakhta; Hussein Kalakech; Gilles Simard; Sophie Tamareille; Véronique Catros; Jacques Callebert; Cédric Gadras; Lydie Tessier; P. Reynier; Fabrice Prunier; Delphine Mirebeau‐Prunier

Background Remote ischemic preconditioning (RIPC) is an attractive therapeutic procedure for protecting the heart against ischemia/reperfusion injury. Despite evidence of humoral mediators transported through the circulation playing a critical role, their actual identities so far remain unknown. We sought to identify plasmatic RIPC‐induced metabolites that may play a role. Methods and Results Rat plasma samples from RIPC and control groups were analyzed using a targeted metabolomic approach aimed at measuring 188 metabolites. Principal component analysis and orthogonal partial least‐squares discriminant analysis were used to identify the metabolites that discriminated between groups. Plasma samples from 50 patients subjected to RIPC were secondarily explored to confirm the results obtained in rats. Finally, a combination of the metabolites that were significantly increased in both rat and human plasma was injected prior to myocardial ischemia/reperfusion in rats. In the rat samples, 124 molecules were accurately quantified. Six metabolites (ornithine, glycine, kynurenine, spermine, carnosine, and serotonin) were the most significant variables for marked differentiation between the RIPC and control groups. In human plasma, analysis confirmed ornithine decrease and kynurenine and glycine increase following RIPC. Injection of the glycine and kynurenine alone or in combination replicated the protective effects of RIPC seen in rats. Conclusions We have hereby reported significant variations in a cocktail of amino acids and biogenic amines after remote ischemic preconditioning in both rat and human plasma. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01390129.

Collaboration


Dive into the Sophie Tamareille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge