Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Van Cromphaut is active.

Publication


Featured researches published by Sophie Van Cromphaut.


The New England Journal of Medicine | 2011

Early versus Late Parenteral Nutrition in Critically Ill Adults

Michael P Casaer; Dieter Mesotten; Greet Hermans; Pieter J. Wouters; Miet Schetz; Geert Meyfroidt; Sophie Van Cromphaut; Catherine Ingels; Philippe Meersseman; Jan Muller; Dirk Vlasselaers; Yves Debaveye; Lars Desmet; Jasperina Dubois; Aimé Van Assche; Simon Vanderheyden; Alexander Wilmer; Greet Van den Berghe

BACKGROUND Controversy exists about the timing of the initiation of parenteral nutrition in critically ill adults in whom caloric targets cannot be met by enteral nutrition alone. METHODS In this randomized, multicenter trial, we compared early initiation of parenteral nutrition (European guidelines) with late initiation (American and Canadian guidelines) in adults in the intensive care unit (ICU) to supplement insufficient enteral nutrition. In 2312 patients, parenteral nutrition was initiated within 48 hours after ICU admission (early-initiation group), whereas in 2328 patients, parenteral nutrition was not initiated before day 8 (late-initiation group). A protocol for the early initiation of enteral nutrition was applied to both groups, and insulin was infused to achieve normoglycemia. RESULTS Patients in the late-initiation group had a relative increase of 6.3% in the likelihood of being discharged alive earlier from the ICU (hazard ratio, 1.06; 95% confidence interval [CI], 1.00 to 1.13; P=0.04) and from the hospital (hazard ratio, 1.06; 95% CI, 1.00 to 1.13; P=0.04), without evidence of decreased functional status at hospital discharge. Rates of death in the ICU and in the hospital and rates of survival at 90 days were similar in the two groups. Patients in the late-initiation group, as compared with the early-initiation group, had fewer ICU infections (22.8% vs. 26.2%, P=0.008) and a lower incidence of cholestasis (P<0.001). The late-initiation group had a relative reduction of 9.7% in the proportion of patients requiring more than 2 days of mechanical ventilation (P=0.006), a median reduction of 3 days in the duration of renal-replacement therapy (P=0.008), and a mean reduction in health care costs of €1,110 (about


Proceedings of the National Academy of Sciences of the United States of America | 2001

Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects.

Sophie Van Cromphaut; Mieke Dewerchin; Joost G. J. Hoenderop; Ingrid Stockmans; Erik Van Herck; Shigeaki Kato; René J. M. Bindels; Desire Collen; Peter Carmeliet; Roger Bouillon; Geert Carmeliet

1,600) (P=0.04). CONCLUSIONS Late initiation of parenteral nutrition was associated with faster recovery and fewer complications, as compared with early initiation. (Funded by the Methusalem program of the Flemish government and others; EPaNIC ClinicalTrials.gov number, NCT00512122.).


American Journal of Respiratory and Critical Care Medicine | 2014

Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis

Greet Hermans; Helena Van Mechelen; Beatrix Clerckx; Tine Vanhullebusch; Dieter Mesotten; Alexander Wilmer; Michael P Casaer; Philippe Meersseman; Yves Debaveye; Sophie Van Cromphaut; Pieter J. Wouters; Rik Gosselink; Greet Van den Berghe

Rickets and hyperparathyroidism caused by a defective vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)2 vitamin D [1,25(OH)2D3] action on calcium homeostasis. We assessed the rate of serum 45Ca accumulation within 10 min of oral gavage in two strains of VDR-knockout (KO) mice (Leuven and Tokyo KO) and observed a 3-fold lower area under the curve in both KO strains. Moreover, we evaluated the expression of intestinal candidate genes involved in transcellular calcium transport. The calcium transport protein1 (CaT1) was more abundantly expressed at mRNA level than the epithelial calcium channel (ECaC) in duodenum, but both were considerably reduced (CaT1>90%, ECaC>60%) in the two VDR-KO strains on a normal calcium diet. Calbindin-D9K expression was decreased only in the Tokyo KO, whereas plasma membrane calcium ATPase (PMCA1b) expression was normal in both VDR-KOs. In Leuven wild-type mice, a high calcium diet inhibited (>90%) and 1,25(OH)2D3 injection or low calcium diet induced (6-fold) duodenal CaT1 expression and, to a lesser degree, ECaC and calbindin-D9K expression. In Leuven KO mice, however, high or low calcium intake decreased calbindin-D9K and PMCA1b expression, whereas CaT1 and ECaC expression remained consistently low on any diet. These results suggest that the expression of the novel duodenal epithelial calcium channels (in particular CaT1) is strongly vitamin D-dependent, and that calcium influx, probably interacting with calbindin-D9K, should be considered as a rate-limiting step in the process of vitamin D-dependent active calcium absorption.


The Lancet Respiratory Medicine | 2013

Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial

Greet Hermans; Michael P Casaer; Beatrix Clerckx; Fabian Güiza; Tine Vanhullebusch; Sarah Derde; Philippe Meersseman; Inge Derese; Dieter Mesotten; Pieter J. Wouters; Sophie Van Cromphaut; Yves Debaveye; Rik Gosselink; Jan Gunst; Alexander Wilmer; Greet Van den Berghe; Ilse Vanhorebeek

RATIONALE Intensive care unit (ICU)-acquired weakness is a frequent complication of critical illness. It is unclear whether it is a marker or mediator of poor outcomes. OBJECTIVES To determine acute outcomes, 1-year mortality, and costs of ICU-acquired weakness among long-stay (≥8 d) ICU patients and to assess the impact of recovery of weakness at ICU discharge. METHODS Data were prospectively collected during a randomized controlled trial. Impact of weakness on outcomes and costs was analyzed with a one-to-one propensity-score-matching for baseline characteristics, illness severity, and risk factor exposure before assessment. Among weak patients, impact of persistent weakness at ICU discharge on risk of death after 1 year was examined with multivariable Cox proportional hazards analysis. MEASUREMENTS AND MAIN RESULTS A total of 78.6% were admitted to the surgical ICU; 227 of 415 (55%) long-stay assessable ICU patients were weak; 122 weak patients were matched to 122 not-weak patients. As compared with matched not-weak patients, weak patients had a lower likelihood for live weaning from mechanical ventilation (hazard ratio [HR], 0.709 [0.549-0.888]; P = 0.009), live ICU (HR, 0.698 [0.553-0.861]; P = 0.008) and hospital discharge (HR, 0.680 [0.514-0.871]; P = 0.007). In-hospital costs per patient (+30.5%, +5,443 Euro per patient; P = 0.04) and 1-year mortality (30.6% vs. 17.2%; P = 0.015) were also higher. The 105 of 227 (46%) weak patients not matchable to not-weak patients had even worse prognosis and higher costs. The 1-year risk of death was further increased if weakness persisted and was more severe as compared with recovery of weakness at ICU discharge (P < 0.001). CONCLUSIONS After careful matching the data suggest that ICU-acquired weakness worsens acute morbidity and increases healthcare-related costs and 1-year mortality. Persistence and severity of weakness at ICU discharge further increased 1-year mortality. Clinical trial registered with www.clinicaltrials.gov (NCT 00512122).


Pediatric Research | 2003

Pregnancy in Mice Lacking the Vitamin D Receptor: Normal Maternal Skeletal Response, But Fetal Hypomineralization Rescued by Maternal Calcium Supplementation

Katrien Rummens; Sophie Van Cromphaut; Geert Carmeliet; Erik Van Herck; Rita van Bree; Ingrid Stockmans; Roger Bouillon; Johan Verhaeghe

BACKGROUND Patients who are critically ill can develop so-called intensive-care unit acquired weakness, which delays rehabilitation. Reduced muscle mass, quality, or both might have a role. The Early Parenteral Nutrition Completing Enteral Nutrition in Adult Critically Ill Patients (EPaNIC) trial (registered with ClinicalTrials.gov, number NCT00512122) showed that tolerating macronutrient deficit for 1 week in intensive-care units (late parenteral nutrition [PN]) accelerated recovery compared with early PN. The role of weakness was unclear. Our aim was to assess whether late PN and early PN differentially affect muscle weakness and autophagic quality control of myofibres. METHODS In this prospectively planned subanalysis of the EPaNIC trial, weakness (MRC sum score) was assessed in 600 awake, cooperative patients. Skeletal muscle biopsies, harvested from 122 patients 8 days after randomisation and from 20 matched healthy controls, were studied for autophagy and atrophy. We determined the significance of differences with Mann-Whitney U, Median, Kruskal-Wallis, or χ(2) (exact) tests, as appropriate. FINDINGS With late PN, 105 (34%) of 305 patients had weakness on first assessment (median day 9 post-randomisation) compared with 127 (43%) of 295 patients given early PN (absolute difference -9%, 95% CI -16 to -1; p=0·030). Weakness recovered faster with late PN than with early PN (p=0·021). Myofibre cross-sectional area was less and density was lower in critically ill patients than in healthy controls, similarly with early PN and late PN. The LC3 (microtubule-associated protein light chain 3) II to LC3I ratio, related to autophagosome formation, was higher in patients given late PN than early PN (p=0·026), reaching values almost double those in the healthy control group (p=0·0016), and coinciding with less ubiquitin staining (p=0·019). A higher LC3II to LC3I ratio was independently associated with less weakness (p=0·047). Expression of mRNA encoding contractile myofibrillary proteins was lower and E3-ligase expression higher in muscle biopsies from patients than in control participants (p≤0·0006), but was unaffected by nutrition. INTERPRETATION Tolerating a substantial macronutrient deficit early during critical illness did not affect muscle wasting, but allowed more efficient activation of autophagic quality control of myofibres and reduced weakness. FUNDING UZ Leuven, Research Foundation-Flanders, the Flemish Government, and the European Research Council.


Stem Cells Translational Medicine | 2014

Humanized Culture of Periosteal Progenitors in Allogeneic Serum Enhances Osteogenic Differentiation and In Vivo Bone Formation

Scott J. Roberts; Helen C. Owen; Wai Long Tam; Lien Solie; Sophie Van Cromphaut; Greet Van den Berghe; Frank P. Luyten

Fetal mineralization appears to be driven by the pregnancy-induced stimulation of intestinal Ca absorption. We thus hypothesized that mineralization would be impaired in fetuses of mice that lack the vitamin D receptor (VDR). Here we report on the maternal response to pregnancy, and the fetal mineralization, in mice with a homozygous disruption of the VDR gene (VDR −/−) mated with wild-type (wt) males. We found that VDR −/− mice show mild hypocalcemia, clear rickets and osteomalacia on bone histomorphometry, lower cortical bone density on quantitative tomography, and reduced concentrations of calbindin-D9k (CaBP-D9k) in duodenal mucosa and kidney. The skeletal response to pregnancy was comparable in wt and VDR −/− mice; duodenal CaBP-D9k concentrations increased during pregnancy in VDR −/− as in wt mice, but remained 40% lower than in wt mice. We confirmed our hypothesis that mineralization is defective in d18.5 VDR+/ − fetuses of VDR −/− mice, both by whole-body Ca determination and histomorphometric evaluation; the number of osteoclastic cells in bone was increased. The fetuses were hypercalcemic and had a 5-fold increase in circulating 1,25(OH)2D3. We then studied pregnancies in VDR −/− females, mated with wt males, fed a high Ca/P/lactose rescue diet during pregnancy. The rescue diet normalized the mineralization, the number of osteoclastic cells, and plasma Ca and 1,25(OH)2D3 concentrations in the fetuses. We interpret the data as evidence that, to ensure normal fetal mineralization, the maternal VDR-dependent intestinal Ca absorption can be substituted by passive Ca absorption entrained by a higher Ca intake. Alternatively or additionally, elevated 1,25(OH)2D3in utero may disturb bone development.


Intensive Care Medicine Experimental | 2015

Critical illness-induced bone loss is related to deficient autophagy and histone hypomethylation

Helen C. Owen; Ineke Vanhees; Jan Gunst; Sophie Van Cromphaut; Greet Van den Berghe

The translation of stem cell‐based regenerative solutions from the laboratory to the clinic is often hindered by the culture conditions used to expand cell populations. Although fetal bovine serum (FBS) is widely used, regulatory bodies and safety concerns encourage alternative, xeno‐free culturing practices. In an attempt to apply this approach to a bone‐forming combination product of human periosteal progenitors (human periosteum derived cells) on a clinically used calcium phosphate carrier, FBS was substituted for human allogeneic serum (hAS) during cell expansion. It was found that cell proliferation was increased in hAS along with an apparent commitment to the osteogenic lineage, indicated by enhanced Runx2 expression, as well as alkaline phosphatase activity and matrix mineralization. Following analysis of signaling pathways, it was found that interferon‐mediated signaling was downregulated, whereas JAK‐STAT signaling was upregulated. STAT3 phosphorylation was enhanced in hAS‐cultured human periosteum derived cells, inhibition of which ablated the proliferative effect of hAS. Furthermore, following in vivo implantation of hAS‐cultured cells on NuOss scaffolds, enhanced bone formation was observed compared with FBS (71% increase, p < .001). Interestingly, the de novo‐formed bone appeared to have a higher ratio of immature regions to mature regions, indicating that after 8 weeks implantation, tissue‐formation processes were continuing. Integration of the implant with the environment appeared to be altered, with a decrease in calcium phosphate grain size and surface area, indicative of accelerated resorption. This study highlights the advantages of using humanized culture conditions for the expansion of human periosteal progenitors intended for bone regeneration.


Journal of Bone and Mineral Research | 2012

Critical illness-related bone loss is associated with osteoclastic and angiogenic abnormalities

Helen C. Owen; Ineke Vanhees; Lien Solie; Scott J. Roberts; Andy Wauters; Frank P. Luyten; Sophie Van Cromphaut; Greet Van den Berghe

BackgroundSurvivors of critical illness are at increased risk of fractures. This may be due to increased osteoclast formation during critical illness, leading to trabecular bone loss. Such bone loss has also been observed in Paget’s disease, and has been related to deficient autophagy. Deficient autophagy has also been documented in vital organs and skeletal muscle of critically ill patients. The objective of this study was to investigate whether deficient autophagy can be linked to critical illness-induced bone loss.MethodsOsteoclasts grown in vitro and their precursor cells isolated from peripheral blood of critically ill patients and from matched healthy volunteers were analysed for the expression of autophagy genes (SQSTM1, Atg3 and Atg7), and proteins (p62, Atg–5, and microtubule-associated protein light chain 3–II (LC3–II)) and for autophagy and epigenetic signalling factors via PCR arrays and were treated with the autophagy inducer rapamycin. The effect of rapamycin was also investigated at the tissue level in an in vivo rabbit model of critical illness.ResultsMany more osteoclasts formed in vitro from the blood precursor cells isolated from critically ill patients, which accumulated p62, and displayed reduced expression of Atg5, Atg7, and LC3–II compared to healthy controls, suggesting deficient autophagy, whilst addition of rapamycin reduced osteoclast formation. PCR arrays revealed a down-regulation of histone methyltransferases coupled with an up-regulation of negative regulators of autophagy. Critically ill rabbits displayed a reduction in trabecular and cortical bone, which was rescued with rapamycin.ConclusionsDeficient autophagy in osteoclasts and their blood precursor cells at least partially explained aberrant osteoclast formation during critical illness and was linked to global histone hypomethylation. Treatment with the autophagy activator Rapamycin reduced patient osteoclast formation in vitro and reduced the amount of bone loss in critically ill rabbits in vivo. These findings may help to develop novel therapeutic targets to prevent critical illness-induced bone loss.


Clinical Transplantation | 2017

Feasibility of diaphragm pacing in patients after bilateral lung transplantation

Dries Testelmans; Philippe Nafteux; Sophie Van Cromphaut; Bart Vrijsen; Robin Vos; Paul De Leyn; Herbert Decaluwé; Dirk Van Raemdonck; Geert Verleden; Bertien Buyse

Critically ill patients are at increased risk of fractures during rehabilitation, and can experience impaired healing of traumatic and surgical bone fractures. In addition, markers of bone resorption are markedly increased in critically ill patients, while markers of bone formation are decreased. In the current study, we have directly investigated the effect of critical illness on bone metabolism and repair. In a human in vitro model of critical illness, Fluorescence‐activated cell sorting (FACS) analysis revealed an increase in circulating CD14+/CD11b+ osteoclast precursors in critically ill patient peripheral blood compared to healthy controls. In addition, the formation of osteoclasts was increased in patient peripheral blood mononuclear cell (PBMC) cultures compared to healthy controls, both in the presence and absence of osteoclastogenic factors receptor activator of NF‐κB ligand (RANKL) and macrophage colony‐stimulating factor (M‐CSF). Culturing PBMCs with 10% critically ill patient serum further increased osteoclast formation and activity in patient PBMCs only, and neutralization studies revealed that immunoglobulin G (IgG) antibody signaling through the immunoreceptor Fc receptor common γ chain III (FcRγIII) played an important role. When analyzing bone formation, no differences in osteogenic differentiation were observed using human periosteal‐derived cells (hPDCs) treated with patient serum in vitro, but a decrease in the expression of vascular endothelial growth factor receptor 1 (VEGF‐R1) suggested impaired vascularization. This was confirmed using serum‐treated hPDCs implanted onto calcium phosphate scaffolds in a murine in vivo model of bone formation, where decreased vascularization and increased osteoclast activity led to a decrease in bone formation in scaffolds with patient serum‐treated hPDCs. Together, these findings may help to define novel therapeutic targets to prevent bone loss and optimize fracture healing in critically ill patients.


The Lancet | 2009

Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study.

Dirk Vlasselaers; Ilse Milants; Lars Desmet; Pieter J. Wouters; Ilse Vanhorebeek; Ingeborg van den Heuvel; Dieter Mesotten; Michael P Casaer; Geert Meyfroidt; Catherine Ingels; Johannes Muller; Sophie Van Cromphaut; Miet Schetz; Greet Van den Berghe

Recent animal studies and intraoperative studies in humans suggested that phrenic nerve stimulation could attenuate ventilator‐induced diaphragm dysfunction. The purpose of the present study is to examine the safety and feasibility of diaphragm pacing during the weaning process after bilateral lung transplantation. Four patients, suffering from chronic pulmonary disease, were included, and diaphragm pacing was evaluated after lung transplantation. Implantation of electrodes at the end of the lung transplant procedure was possible in three of the four patients. In all implanted patients, stimulation of the diaphragm could trigger the ventilator. Implanted electrodes were completely removed by percutaneous retraction after up to 7 days of pacing. Adverse events related to pacing included occurrence of pain. Diaphragm pacing with temporary electrodes, inserted during surgery, is feasible and is able to trigger the ventilator in patients after bilateral lung transplantation. The use of intradiaphragmatic electrodes creates the additional opportunity to monitor the evolution of diaphragm electromyography during the postoperative weaning process.

Collaboration


Dive into the Sophie Van Cromphaut's collaboration.

Top Co-Authors

Avatar

Greet Van den Berghe

University Medical Center New Orleans

View shared research outputs
Top Co-Authors

Avatar

Dieter Mesotten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Michael P Casaer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pieter J. Wouters

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alexander Wilmer

Universitaire Ziekenhuizen Leuven

View shared research outputs
Top Co-Authors

Avatar

Catherine Ingels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Geert Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Geert Meyfroidt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Greet Hermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Philippe Meersseman

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge