Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soraia C. Abreu is active.

Publication


Featured researches published by Soraia C. Abreu.


Respiratory Research | 2014

Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema

Mariana A. Antunes; Soraia C. Abreu; Fernanda F. Cruz; Ana Clara Teixeira; Miquéias Lopes-Pacheco; Elga Bandeira; Priscilla C. Olsen; Bruno L. Diaz; Christina Takyia; Isalira Prg Freitas; Nazareth N. Rocha; Vera Luiza Capelozzi; Debora G. Xisto; Daniel J. Weiss; Marcelo M. Morales; Patricia R.M. Rocco

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1-105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-β levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Critical Care Medicine | 2010

Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury.

Indianara Araujo; Soraia C. Abreu; Tatiana Maron-Gutierrez; Fernanda F. Cruz; Livia Fujisaki; Humberto Carreira; Felipe Ornellas; Debora S. Ornellas; Adriana Vieira-de-Abreu; Hugo C. Castro-Faria-Neto; Alexandre Muxfeldt AbʼSaber; Walcy Rosolia Teodoro; Bruno L. Diaz; Carlos Peres DaCosta; Vera Luiza Capelozzi; Paolo Pelosi; Marcelo M. Morales; Patricia R.M. Rocco

Objective:To hypothesize that bone marrow-derived mononuclear cell (BMDMC) therapy might act differently on lung and distal organs in models of pulmonary or extrapulmonary acute lung injury with similar mechanical compromises. The pathophysiology of acute lung injury differs according to the type of primary insult. Design:Prospective, randomized, controlled, experimental study. Setting:University research laboratory. Measurements and Main Results:In control animals, sterile saline solution was intratracheally (0.05 mL) or intraperitoneally (0.5 mL) injected. Acute lung injury animals received Escherichia coli lipopolysaccharide intratracheally (40 μg, ALIp) or intraperitoneally (400 μg, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALIexp animals were further randomized into subgroups receiving saline (0.05 mL) or BMDMC (2 × 106) intravenously. On day 7, BMDMC led to the following: 1) increase in survival rate; 2) reduction in static lung elastance, alveolar collapse, and bronchoalveolar lavage fluid cellularity (higher in ALIexp than ALIp); 3) decrease in collagen fiber content, cell apoptosis in lung, kidney, and liver, levels of interleukin-6, KC (murine interleukin-8 homolog), and interleukin-10 in bronchoalveolar lavage fluid, and messenger RNA expression of insulin-like growth factor, platelet-derived growth factor, and transforming growth factor-&bgr; in both groups, as well as repair of basement membrane, epithelium and endothelium, regardless of acute lung injury etiology; 4) increase in vascular endothelial growth factor levels in bronchoalveolar lavage fluid and messenger RNA expression in lung tissue in both acute lung injury groups; and 5) increase in number of green fluorescent protein-positive cells in lung, kidney, and liver in ALIexp. Conclusions:BMDMC therapy was effective at modulating the inflammatory and fibrogenic processes in both acute lung injury models; however, survival and lung mechanics and histology improved more in ALIexp. These changes may be attributed to paracrine effects balancing pro- and anti-inflammatory cytokines and growth factors, because a small degree of pulmonary BMDMC engraftment was observed.


Intensive Care Medicine | 2011

Mechanisms of cellular therapy in respiratory diseases.

Soraia C. Abreu; Mariana A. Antunes; Paolo Pelosi; Marcelo M. Morales; Patricia R.M. Rocco

PurposeStem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease.MethodsFor this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained.ResultsThere is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation.ConclusionA better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.


Respiratory Physiology & Neurobiology | 2012

Protective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model

Fernanda F. Cruz; Mariana A. Antunes; Soraia C. Abreu; Livia Fujisaki; Johnatas D. Silva; Debora G. Xisto; Tatiana Maron-Gutierrez; Debora S. Ornellas; Vanessa Karen de Sá; Nazareth N. Rocha; Vera Luiza Capelozzi; Marcelo M. Morales; Patricia R.M. Rocco

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 × 10(6), CELL) intravenously 3h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-β, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema.


Respiratory Physiology & Neurobiology | 2011

Effects of bone marrow-derived mononuclear cells on airway and lung parenchyma remodeling in a murine model of chronic allergic inflammation

Soraia C. Abreu; Mariana A. Antunes; Tatiana Maron-Gutierrez; Fernanda F. Cruz; Luana G. Carmo; Debora S. Ornellas; Humberto C. Junior; Alexandre Muxfeldt Ab'Saber; Edwin Roger Parra; Vera Luiza Capelozzi; Marcelo M. Morales; Patricia R.M. Rocco

We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 × 10⁶) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-β, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes.


Journal of Applied Physiology | 2010

Sex-specific lung remodeling and inflammation changes in experimental allergic asthma

Mariana A. Antunes; Soraia C. Abreu; Adriana L. Silva; Edwin Roger Parra-Cuentas; Alexandre Muxfeldt Ab'Saber; Vera Luiza Capelozzi; Tatiana P. T. Ferreira; Marco A. Martins; Patrícia M.R. e Silva; Patricia R.M. Rocco

There is evidence that sex and sex hormones influence the severity of asthma. Airway and lung parenchyma remodeling and the relationship of ultrastructural changes to airway responsiveness and inflammation in male, female, and oophorectomized mice (OVX) were analyzed in experimental chronic allergic asthma. Seventy-two BALB/c mice were randomly divided into three groups (n=24/each): male, female, and OVX mice, whose ovaries were removed 7 days before the start of sensitization. Each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, the amount of matrix metalloproteinase (MMP)-2 and MMP-9, and the number of eosinophils and interleukin (IL)-4, IL-5, and transforming growth factor (TGF)-β levels in bronchoalveolar lavage fluid were higher in female than male OVA mice. The response of OVX mice was similar to that of males, except that IL-5 remained higher. Nevertheless, after OVA provocation, airway responsiveness to methacholine was higher in males compared with females and OVX mice. In conclusion, sex influenced the remodeling process, but the mechanisms responsible for airway hyperresponsiveness seemed to differ from those related to remodeling.


Cell Transplantation | 2010

Bone marrow mononuclear cell therapy led to alveolar-capillary membrane repair, improving lung mechanics in endotoxin-induced acute lung injury.

Luiz Felipe M. Prota; Roberta M. Lassance; Tatiana Maron-Gutierrez; Raquel C. Castiglione; C. S. N. B. Garcia; Maria Cristina E. Santana; Jackson Souza-Menezes; Soraia C. Abreu; Vivian Yochiko Samoto; Marcelo Felipe Santiago; Vera Luiza Capelozzi; Christina Maeda Takiya; Patricia R.M. Rocco; Marcelo M. Morales

The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injur;y (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 μg, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 × 107 cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (Est), resistive (ΔP1), and viscoelastic (ΔP2) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung Est, ΔP1, and ΔP2 compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.


Respiratory Physiology & Neurobiology | 2013

Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma.

Soraia C. Abreu; Mariana A. Antunes; Júlia C. de Castro; Milena V. de Oliveira; Elga Bandeira; Debora S. Ornellas; Bruno L. Diaz; Marcelo M. Morales; Débora G. Xisto; Patricia R.M. Rocco

We compared the effects of bone marrow-derived mononuclear cells (BMMCs) and mesenchymal stromal cells (MSCs) on airway inflammation and remodeling and lung mechanics in experimental allergic asthma. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA group). A control group received saline using the same protocol. Twenty-four hours after the last challenge, groups were further randomized into subgroups to receive saline, BMMCs (2×10(6)) or MSCs (1×10(5)) intratracheally. BMMC and MSC administration decreased cell infiltration, bronchoconstriction index, alveolar collapse, collagen fiber content in the alveolar septa, and interleukin (IL)-4, IL-13, transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF) levels compared to OVA-SAL. Lung function, alveolar collapse, collagen fiber deposition in alveolar septa, and levels of TGF-β and VEGF improved more after BMMC than MSC therapy. In conclusion, intratracheal BMMC and MSC administration effectively modulated inflammation and fibrogenesis in an experimental model of asthma, but BMMCs was associated with greater benefit in terms of reducing levels of fibrogenesis-related growth factors.


Respiratory Physiology & Neurobiology | 2009

Intratracheal instillation of bone marrow-derived cell in an experimental model of silicosis.

Roberta M. Lassance; Luiz Felipe M. Prota; Tatiana Maron-Gutierrez; Cristiane S. N. B. Garcia; Soraia C. Abreu; Caroline P. Pássaro; Debora G. Xisto; Raquel C. Castiglione; Humberto Carreira; Debora S. Ornellas; Maria Cristina E. Santana; Sergio Augusto Lopes de Souza; Bianca Gutfilen; Léa Miriam Barbosa da Fonseca; Patricia R.M. Rocco; Marcelo M. Morales

The time course of lung mechanics, histology, and inflammatory and fibrogenic mediators are analysed after intratracheal instillation (IT) of bone marrow-derived cells (BMDC) in a model of silicosis. C57BL/6 mice were randomly divided into SIL (silica, 20mg IT) and control (CTRL) groups (saline IT). At day 15, mice received saline or BMDC (2 x 10(6)cells) IT. The biodistribution of technetium-99m BMDC was higher in lungs compared with other organs. At days 30 and 60, lung mechanics, the area of granulomatous nodules, and mRNA expression of IL-1beta and TGF-beta were higher in SIL than CTRL animals. BMDC minimized changes in lung mechanics, the area of granulomatous nodules, and total cell infiltration at day 30, but these effects were no longer observed at day 60. Conversely, BMDC avoided the expression of IL-1beta at days 30 and 60 and TGF-beta only at day 30. In conclusion, BMDC therapy improved lung mechanics and histology, but this beneficial effect was not maintained in the course of injury.


Respiratory Physiology & Neurobiology | 2011

Impact of obesity on airway and lung parenchyma remodeling in experimental chronic allergic asthma

Simone A Saraiva; Adriana L. Silva; Debora G. Xisto; Soraia C. Abreu; Johnatas D. Silva; Pedro L. Silva; Tatiana P.F. Teixeira; Edwin Roger Parra; Ana Laura N. Carvalho; Raquel Annoni; Thais Mauad; Vera Luiza Capelozzi; Patrícia M.R. e Silva; Marco A. Martins; Patricia R.M. Rocco

The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma.

Collaboration


Dive into the Soraia C. Abreu's collaboration.

Top Co-Authors

Avatar

Patricia R.M. Rocco

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Marcelo M. Morales

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana A. Antunes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Debora G. Xisto

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Tatiana Maron-Gutierrez

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Fernanda F. Cruz

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debora S. Ornellas

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Johnatas D. Silva

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge