Soraya Díez
Guy's and St Thomas' NHS Foundation Trust
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soraya Díez.
Infection and Immunity | 2001
Beatriz L. Gómez; Joshua D. Nosanchuk; Soraya Díez; Sirida Youngchim; Philip Aisen; Luz E. Cano; Angela Restrepo; Arturo Casadevall; Andrew J. Hamilton
ABSTRACT Melanins are implicated in the pathogenesis of several human diseases, including some microbial infections. In this study, we analyzed whether the conidia and the yeasts of the thermally dimorphic fungal pathogen Paracoccidioides brasiliensis produce melanin or melanin-like compounds in vitro and during infection. Growth of P. brasiliensis mycelia on water agar alone produced pigmented conidia, and growth of yeasts in minimal medium withl-3,4-dihydroxyphenylalanine (l-DOPA) produced pigmented cells. Digestion of the pigmented conidia and yeasts with proteolytic enzymes, denaturant, and hot concentrated acid yielded dark particles that were the same size and shape as their propagules. Immunofluorescence analysis demonstrated reactivity of a melanin-binding monoclonal antibody (MAb) with the pigmented conidia, yeasts, and particles. Electron spin resonance spectroscopy identified the yeast-derived particles produced in vitro when P. brasiliensis was grown in l-DOPA medium as a melanin-like compound. Nonreducing polyacrylamide gel electrophoresis of cytoplasmic yeast extract revealed a protein that catalyzed melanin synthesis from l-DOPA. The melanin binding MAb reacted with yeast cells in tissue from mice infected with P. brasiliensis. Finally digestion of infected tissue liberated particles reactive to the melanin binding MAb that had the typical morphology of P. brasiliensis yeasts. These data strongly suggest that P. brasiliensis propagules, both conidia and yeast cells, can produce melanin or melanin-like compounds in vitro and in vivo. Based on what is known about the function of melanin in the virulence of other fungi, this pigment may play a role in the pathogenesis of paracoccidioidomycosis.
Infection and Immunity | 2002
Joshua D. Nosanchuk; Beatriz L. Gómez; Sirida Youngchim; Soraya Díez; Philip Aisen; Rosely Maria Zancopé-Oliveira; Angela Restrepo; Arturo Casadevall; Andrew J. Hamilton
ABSTRACT Melanin is made by several important pathogenic fungi and has been implicated in the pathogenesis of a number of fungal infections. This study investigated whether the thermally dimorphic fungal pathogen Histoplasma capsulatum var. capsulatum produced melanin or melanin-like compounds in vitro and during infection. Growth of H. capsulatum mycelia in chemically defined minimal medium produced pigmented conidia. Growth of H. capsulatum yeast in chemically defined minimal medium with l-3,4-dihydroxyphenylalanine (DOPA) or (-)-epinephrine produced pigmented cells. Treatment of the pigmented cells with proteolytic enzymes, denaturant, and hot concentrated acid yielded dark particles that were similar in size and shape to their respective propagules. Melanin-binding monoclonal antibodies (MAb) labeled pigmented conidia, yeast, and the isolated particles as determined by immunofluorescence microscopy. Electron spin resonance spectroscopy revealed that pigmented yeast cells and particles derived from pigmented cells were stable free radicals consistent with their identification as melanins. Tissues from mice infected with H. capsulatum and from biopsy specimens from a patient with histoplasmosis contained fungal cells that were labeled by melanin-binding MAb. Digestion of infected mouse tissues yielded dark particles that reacted with the melanin-binding MAb and were similar in appearance to H. capsulatum yeast cells. Additionally, sera from infected mice contained antibodies that bound melanin particles. Phenoloxidase activity capable of synthesizing melanin from L-DOPA was detected in cytoplasmic yeast cell extracts. These findings indicate that H. capsulatum conidia and yeast can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role to play in the pathogenesis of histoplasmosis.
Infection and Immunity | 2005
Ángel González; Beatriz L. Gómez; Soraya Díez; Orville Hernández; Angela Restrepo; Andrew J. Hamilton; Luz Elena Cano
ABSTRACT Microorganisms adhere to extracellular matrix proteins by means of their own surface molecules. Paracoccidioides brasiliensis conidia have been shown to be capable of interacting with extracellular matrix proteins. We aimed at determining the presence of fungal proteins that could interact with extracellular matrix protein and, if found, attempt their purification and characterization. Various extracts were prepared from P. brasiliensis mycelial and yeast cultures (total homogenates, β-mercaptoethanol, and sodium dodecyl sulfate [SDS] extracts) and analyzed by ligand affinity assays with fibronectin, fibrinogen and laminin. Two polypeptides were detected in both fungal forms. SDS extracts that interacted with all the extracellular matrix protein were tested; their molecular masses were 19 and 32 kDa. Analysis of the N-terminal amino acid sequence of the purified 32-kDa mycelial protein showed substantial homology with P. brasiliensis, Histoplasma capsulatum, and Neurospora crassa hypothetical proteins. Additionally, a monoclonal antibody (MAb) produced against this protein recognized the 32-kDa protein in the SDS extracts of both fungal forms for immunoblot. Immunofluorescence analysis revealed that this MAb reacted not only with mycelia and yeast cells, but also with conidia, indicating that this protein was shared by the three fungal propagules. By immunoelectron microscopy, this protein was detected in the cell walls and in the cytoplasm. Both the 32-kDa purified protein and MAb inhibited the adherence of conidia to the three extracellular matrix proteins in a dose-dependent manner. These findings demonstrate the presence of two polypeptides capable of interacting with extracellular matrix proteins on the surface of P. brasiliensis propagules, indicating that there may be common receptors for laminin, fibronectin, and fibrinogen. These proteins would be crucial for initial conidial adherence and perhaps also in dissemination of paracoccidioidomycosis.
Infection and Immunity | 2005
Rachael Morris-Jones; Beatriz L. Gómez; Soraya Díez; Martha Urán; Stephen Morris-Jones; Arturo Casadevall; Joshua D. Nosanchuk; Andrew J. Hamilton
ABSTRACT Melanins are implicated in the pathogenesis of several important human diseases. This study confirmed the presence of melanin particles in Candida albicans in vitro and during infection. Dark particles were isolated from the digestion of C. albicans cultures and from infected tissue, as established by electron microscopy and immunofluorescence techniques.
Journal of Clinical Microbiology | 2003
Soraya Díez; Beatriz L. Gómez; Juan G. McEwen; Angela Restrepo; R.J. Hay; Andrew J. Hamilton
ABSTRACT The diagnosis of paracoccidioidomycosis (PCM) has relied on the identification of the hosts humoral response by using a variety of immunological methods, such as complement fixation and immunodiffusion. Although these approaches are useful, historically their sensitivity and specificity have often been compromised by the use of complex mixtures of undefined antigens. The use of combinations of purified, well-characterized antigens appears preferable and may yield optimum results. Accordingly an indirect enzyme-linked immunosorbent assay (ELISA) using combinations of the previously described 27-kDa recombinant antigen and the 87-kDa heat shock protein were used for diagnosis and follow-up of patients with PCM. A total of 37 patients classified according to their clinical presentations (7 with the acute or subacute form of the disease, 22 with the chronic form of the disease, and 8 with the chronic unifocal form) were studied. Eighteen of these patients were also evaluated at every follow-up appointment. Forty serum samples from patients with other diseases and 50 serum samples from healthy individuals were also studied. Detection of anti-27-kDa and anti-87-kDa antibodies in sera of patients with PCM by ELISA using a combination of the two purified proteins showed a sensitivity of 92% with a specificity of 88% in comparison with normal human sera and 90% in comparison with the heterologous sera. These results demonstrated a significant increase in sensitivity and specificity compared to results when the antigens were used separately. Thus, the use of combinations of well-defined antigens appears to offer clear advantages over the use of single antigens when diagnosing PCM.
Journal of Clinical Microbiology | 2002
Soraya Díez; Beatriz L. Gómez; Angela Restrepo; R.J. Hay; Andrew J. Hamilton
ABSTRACT The 87-kDa antigen derived from the fungal pathogen Paracoccidioides brasiliensis can be detected in the sera of infected patients, and its levels have been shown to correlate well with response to treatment and with clinical cure. Despite its potential importance, the antigen has been poorly characterized. The 87-kDa antigen was purified to homogeneity via preparative gel electrophoresis; N-terminal amino acid sequencing revealed substantial homology with heat shock proteins (hsps) from a variety of organisms. A monoclonal antibody (MAb) raised against a Histoplasma capsulatum 80-kDa hsp showed cross-reactivity to the purified 87-kDa antigen via Western blotting, and the 87-kDa-specific MAb P1B demonstrated that the antigen was expressed at higher levels in yeast than in mycelia by the same technique. Enzyme-linked immunosorbent assay and immunofluorescence reactivity using P1B confirmed increased expression of the 87-kDa antigen during the temperature-induced transformation of mycelia to yeast. Yeast-to-mycelium transformation was accompanied by a fall in expression, although the 87-kDa antigen was clearly constitutively expressed in both phases. Immunochemical staining of tissues from patients with MAb P1B who were infected with P. brasiliensis confirmed in vivo expression of the 87-kDa antigen by yeasts, and identification of this antigen via this method appears to be a useful adjunct to other methods used to diagnose paracoccidioidomycosis.
Revista Iberoamericana De Micologia | 1999
Germán G. Corredor; John Harold Castaño; Luis A. Peralta; Soraya Díez; Myrtha Arango; Juan G. McEwen; Angela Restrepo
Journal of Clinical Microbiology | 1999
Beatriz L. Gómez; J. Figueroa; Andrew J. Hamilton; Soraya Díez; M. Rojas; Ángela Ma. Tobón; Angela Restrepo; R.J. Hay
Journal of Clinical Microbiology | 1998
Beatriz L. Gómez; J. Figueroa; Andrew J. Hamilton; Soraya Díez; M. Rojas; Ángela Ma. Tobón; R.J. Hay; Angela Restrepo
Clinical and Vaccine Immunology | 1998
Blanca L. Ortiz; Soraya Díez; Martha Urán; J. M. Rivas; M. Romero; V. Caicedo; Angela Restrepo; Juan G. McEwen