Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Søren Ejling Larsen is active.

Publication


Featured researches published by Søren Ejling Larsen.


Journal of Physical Oceanography | 1998

On the Dependence of Sea Surface Roughness on Wind Waves

H.K. Johnson; Jørgen Højstrup; H. J. Vested; Søren Ejling Larsen

Abstract The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u∗ of about ±10% make it difficult to conclude on the trend in zch using measured data from a particular dataset. This problem is solved by combining different field data together. This gives a trend of decreasing zch with wave age, expressed as: zch = 1.89(cp/u∗)−1.59. Furthermore, it is shown that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock parameter (0.018) also give very good results for the wind friction velocities at the RASEX site.


Journal of Geophysical Research | 1999

Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results

Matthew P. Golombek; Robert C. Anderson; Jeffrey R. Barnes; James F. Bell; Nathan T. Bridges; Daniel T. Britt; J. Brückner; R. A. Cook; David Crisp; Joy A. Crisp; Thanasis E. Economou; William M. Folkner; Ronald Greeley; Robert M. Haberle; R. B. Hargraves; J.A. Harris; A. F. C. Haldemann; K. E. Herkenhoff; S. F. Hviid; R. Jaumann; James Richard Johnson; Pieter Kallemeyn; H. U. Keller; R. Kirk; J. M. Knudsen; Søren Ejling Larsen; Mark T. Lemmon; M. B. Madsen; J.A. Magalhaes; J. N. Maki

Mars Pathfinder successfully landed at Ares Vallis on July 4, 1997, deployed and navigated a small rover about 100 m clockwise around the lander, and collected data from three science instruments and ten technology experiments. The mission operated for three months and returned 2.3 Gbits of data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. Path-finder is the best known location on Mars, having been clearly identified with respect to other features on the surface by correlating five prominent horizon features and two small craters in lander images with those in high-resolution orbiter images and in inertial space from two-way ranging and Doppler tracking. Tracking of the lander has fixed the spin pole of Mars, determined the precession rate since Viking 20 years ago, and indicates a polar moment of inertia, which constrains a central metallic core to be between 1300 and ∼2000 km in radius. Dark rocks appear to be high in silica and geochemically similar to anorogenic andesites; lighter rocks are richer in sulfur and lower in silica, consistent with being coated with various amounts of dust. Rover and lander images show rocks with a variety of morphologies, fabrics and textures, suggesting a variety of rock types are present. Rounded pebbles and cobbles on the surface as well as rounded bumps and pits on some rocks indicate these rocks may be conglomerates (although other explanations are also possible), which almost definitely require liquid water to form and a warmer and wetter past. Air-borne dust is composed of composite silicate particles with a small fraction of a highly magnetic mineral, interpreted to be most likely maghemite; explanations suggest iron was dissolved from crustal materials during an active hydrologic cycle with maghemite freeze dried onto silicate dust grains. Remote sensing data at a scale of a kilometer or greater and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catstrophic floods, which are relatively dust free. The surface appears to have changed little since it formed billions of years ago, with the exception that eolian activity may have deflated the surface by ∼3–7 cm, sculpted wind tails, collected sand into dunes, and eroded ventifacts (fluted and grooved rocks). Pathfinder found a dusty lower atmosphere, early morning water ice clouds, and morning near-surface air temperatures that changed abruptly with time and height. Small scale vortices, interpreted to be dust devils, were observed repeatedly in the afternoon by the meteorology instruments and have been imaged.


Journal of Geophysical Research | 1991

A study of the inertial‐dissipation method for computing air‐sea fluxes

James B. Edson; Christopher W. Fairall; P. G. Mestayer; Søren Ejling Larsen

The inertial-dissipation method has long been used to estimate air-sea fluxes from ships because it does not require correction for ship motion. A detailed comparison of the inertial-dissipation fluxes with the direct covariance method is given, using data from the Humidity Exchange Over the Sea (HEXOS) main experiment, HEXMAX. In this experiment, inertial-dissipation packages were deployed at the end of a 17 m boom, in a region relatively free of flow distortion; and on a mast 7 m above the platform (26 m above the sea surface) in a region of considerable flow distortion. An error analysis of the inertial-dissipation method indicates that stress is most accurately measured in near-neutral conditions, whereas scalar fluxes are most accurately measured in near-neutral and unstable conditions. It is also shown that the inertial-dissipation stress estimates are much less affected by the flow distortion caused by the platform as well as by the boom itself. The inertial-dissipation (boom and mast) and boom covariance estimates of stress agree within ±20%. The latent heat flux estimates agree within approximately ±45%. The sensible heat flux estimates agree within ±26% after correction for velocity contamination of the sonic temperature spectra. The larger uncertainty in the latent heat fluxes is due to poor performance of our Lyman-α hygrometers in the sea spray environment. Improved parameterizations for the stability dependence of the dimensionless humidity and temperature structure functions are given. These functions are used to find a best fit for effective Kolmogorov constants of 0.55 for velocity (assuming a balance of production and dissipation of turbulent kinetic energy) and 0.79 for temperature and humidity. A Kolmogorov constant of 0.51 implies a production-dissipation imbalance of approximately 12% in unstable conditions.


Boundary-Layer Meteorology | 1984

Modelling velocity spectra in the lower part of the planetary boundary layer

H. R. Olesen; Søren Ejling Larsen; J. Højstrup

Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8NKby% kaaa!37B5!\[f\]m for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit one curve.The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given.In stable, horizontal velocity spectra, there is often a ‘gap’ at low frequencies. Using dimensional considerations and the spectral model previously derived, an expression for the gap frequency is found.


Tellus B | 2008

A review of measurement and modelling results of particle atmosphere–surface exchange

S. C. Pryor; Martin Gallagher; H. Sievering; Søren Ejling Larsen; R. J. Barthelmie; F. Birsan; E. Nemitz; Janne Rinne; Markku Kulmala; Tiia Grönholm; R. Taipale; Timo Vesala

Atmosphere–surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (vd) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima of approximately 0.01 and 0.2 cm s-1 over grasslands and 0.1–1 cm s-1 over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (vd) for particle diameters of 0.1–2 μm as manifest in theoretical predictions. Closer agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model approaches and innovations in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by proposing a number of research avenues that should be pursued in to facilitate further insights and development of improved numerical models of atmospheric particles.


Tellus B | 2007

On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements

Andreas Ibrom; Ebba Dellwik; Søren Ejling Larsen; Kim Pilegaard

We consider an imperfection of real closed-path eddy correlation systems—the decoupling of the water vapour and CO2 concentrations—with respect to the application of the Webb–Pearman–Leuning (WPL) theory. It is described why and how the current application of the WPL theory needs to be adapted to the processes in closed-path sensors. We show the quantitative effects of applying the WPL theory in different ways using CO2 flux measurements taken above the Danish Beech forest CarboEurope site near Sorø, Zealand. Using the WPL theory in closed-path sensors without taking amplitude damping and decoupling into account, overcorrected the annual flux by 21%, or 31 g m-2 yr-1, to which the decoupling effect contributed with 7%. We suggest either converting the raw data point-by-point to mixing ratios or using the uncorrected covariances of water vapour mole fractions with the vertical wind velocity that were calculated with the same time lag as for the scalar concentration when correcting the dilution effect.We showed that the two approaches yielded equivalent flux results. Correct ways of applying spectral corrections to CO2 fluxes calculated in either way are also shown. The findings reported here do not apply to open-path sensors.


Nuclear Technology | 1984

Description of the riso puff diffusion model

Torben Mikkelsen; Søren Ejling Larsen; Søren Thykier-Nielsen

An operational puff diffusion model has been developed at Riso National Laboratory to provide risk and safety assessments in connection with nuclear installations. The computer model releases a sequence of puffs with individual pollutant and heat contents, then calculates the time-dependent concentration field, which is provided by the collection of puffs. The puffs are advected through a three-dimensional grid on the basis of a sequence of either measured or simulated horizontal wind vectors. In one case study where the time duration of a pollutant release was varied, the puff model predicted a Gaussian dose distribution only when the source duration was relatively short. For use at distances up to about 1 km from the release point, experimental observations of nonstationary smoke plume diffusion seem to justify a puff advection scheme, where all the puffs in each time step are advected with the instantaneous velocity vector measured at the release point.


Journal of Geophysical Research | 2010

Winds at the Phoenix landing site

C. Holstein-Rathlou; H. P. Gunnlaugsson; Jonathan Peter Merrison; Keri Bean; Bruce A. Cantor; Jamie Davis; Richard Davy; N.B. Drake; M. D. Ellehoj; W. Goetz; S. F. Hviid; Carlos F. Lange; Søren Ejling Larsen; Mark T. Lemmon; M. B. Madsen; M. C. Malin; John E. Moores; P. Nørnberg; Peter W. H. Smith; Leslie Kay Tamppari; Peter A. Taylor

[1] Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data are highly turbulent behavior during midday due to daytime turbulence with more stable conditions during nighttime. From L s ~77°-123° winds were generally ~4 m s -1 from the east, with 360° rotation during midday. From L s ~123°-148° daytime wind speeds increased to an average of 6-10 m s -1 and were generally from the west. The highest wind speed recorded was 16 m s -1 seen on L s ~147°. Estimates of the surface roughness height are calculated from the smearing of the Kapton part of the Telltale during image exposure due to a 3 Hz turbulence and nighttime wind variability. These estimates yield 6 ± 3 mm and 5 ± 3 mm, respectively. The Telltale wind data are used to suggest that Heimdal crater is a source of nighttime temperature fluctuations. Deviations between temperatures measured at various heights are explained as being due to winds passing over the Phoenix Lander. Events concerning sample delivery and frost formation are described and discussed. Two different mechanisms of dust lifting affecting the Phoenix site are proposed based on observations made with Mars Color Imager on Mars Reconnaissance Orbiter and the Telltale. The first is related to evaporation of the seasonal CO 2 ice and is observed up to L s ~95°. These events are not associated with increased wind speeds. The second mechanism is observed after L s ~111° and is related to the passing of weather systems characterized by condensate clouds in orbital images and higher wind speeds as measured with the Telltale.


Reviews of Geophysics | 2011

The Martian atmospheric boundary layer

A. Petrosyan; Boris Galperin; Søren Ejling Larsen; Stephen R. Lewis; Anni Määttänen; P. L. Read; Nilton De Oliveira Renno; L. P. H. T. Rogberg; Hannu Savijärvi; T. Siili; Aymeric Spiga; A. Toigo; Luis Vázquez

The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime. This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earths PBL, classical Monin-Obukhov similarity theory applies reasonably well to the Martian PBL under most conditions, though with some intriguing differences relating to the lower atmospheric density at the Martian surface and the likely greater role of direct radiative heating of the atmosphere within the PBL itself. Most of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which anticipated missions to Mars in the near future will fulfill these requirements.


Journal of Solar Energy Engineering-transactions of The Asme | 2005

Ten Years of Meteorological Measurements for Offshore Wind Farms

R. J. Barthelmie; O.F. Hansen; Karen Enevoldsen; Jørgen Højstrup; Sten Tronæs Frandsen; S. C. Pryor; Søren Ejling Larsen; Maurizio Motta; Peter Sanderhoff

Riso has been monitoring wind resources and power output from offshore wind farms since 1993. A considerable degree of expertise has been developed in optimizing measurements and in using these databases to develop and validate models for offshore environments. This paper describes the evolution of monitoring strategies to a fully automated satellite based retrieval that provides near-real time access to offshore data, even at remote stand-alone masts. An overview of wind speed and turbulence at offshore sites in Denmark is given. Finally, three methods of generating long-term wind resource estimates from short-term measurements are outlined.

Collaboration


Dive into the Søren Ejling Larsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoli Guo Larsén

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Ejsing Jørgensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jake Badger

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Tronæs Frandsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

P.D. Nightingale

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge