Søren Lindbæk Broman
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Søren Lindbæk Broman.
Journal of the American Chemical Society | 2010
Søren Lindbæk Broman; Michael Åxman Petersen; Christian G. Tortzen; Anders Kadziola; Kristine Kilså; Mogens Brøndsted Nielsen
A selection of dihydroazulene (DHA) photoswitches incorporating an arylethynyl-substituent in the seven-membered ring was prepared by palladium-catalyzed Sonogashira cross-coupling reactions employing a suitable bromo-functionalized DHA. Shielding of the alkyne bridge and separating the aryl and DHA units, by sterically demanding groups, was required to obtain stable compounds. The DHAs underwent a light-induced ring-opening to vinylheptafulvenes (VHFs) which were thermally converted to a mixture of two DHA regioisomers, one of which was the original one. The influence of the aryl groups on the DHA and VHF absorptions and on their interconversion was investigated in detail. The rates of the switching events were finely tuned by the donor or acceptor strength of the aryl group. The thermal ring closure was found to proceed most readily in the presence of an electron-donating group on the seven-membered ring. The rate constant was found to follow a Hammett linear free energy correlation, which signals that stabilization of a positive charge in the seven-membered ring plays a crucial role in the ring-closure reaction. In view of these findings, it was possible to control the switching event by protonation/deprotonation of an anilino-substituted DHA. Also, the light-induced ring opening reaction was strongly controlled by acid/base. In addition to the mesomeric effects exerted by an arylethynyl group, the inductive effects exerted by different groups on the thermal ring closure were elucidated. Although the alkyne bridge transmits the electronic character of the aryl group, the ring-closure is retarded for all the ethynylated compounds relative to the parent unsubstituted compound. Along with our synthesis of suitable arylalkynes, we discovered an interesting byproduct in a Sonogashira cross-coupling reaction involving a nitrophenyl group, namely a diaryl azoxy compound. Its structure was confirmed by X-ray crystallographic analysis.
Chemistry: A European Journal | 2013
Søren Lindbæk Broman; Martyn Jevric; Mogens Brøndsted Nielsen
Linear free-energy relationships, like Hammett correlations, are fundamental in physical organic chemistry for the elucidation of reaction mechanisms. In this work, we show that Hammett correlations exist for the ring closure of six different model systems of vinylheptafulvenes (VHFs) to their corresponding dihydroazulenes (DHAs). These first-order reactions were easily followed by UV/Vis absorption spectroscopy on account of the significantly different absorption characteristics between VHFs and DHAs. Opposing effects displayed by substituent groups at two different positions are conveniently accounted for by simply subtracting the two Hammett σ values of each group. The linear correlations readily allow us to obtain unknown and approximate Hammett σ values for previously uninvestigated substituents. We also show that they can provide alternative values to the standard ones. We present values for a variety of substituent groups ranging from alkynes, sulfones, sulfoxides, and different heteroaromatics. The electronic effects exerted by substituent groups on VHFs are also reflected in their absorption maxima. Thus, we have established an empirical relationship between the absorption maximum of the VHF and the Hammett σ values of its substituents. This fine-tuning of electronic properties is particularly important for the ongoing efforts of using the DHA/VHF molecular switch in molecular electronics devices.
Journal of Physical Chemistry A | 2013
Oliver Schalk; Søren Lindbæk Broman; Michael Åxman Petersen; Dmitry Khakhulin; Rasmus Y. Brogaard; Mogens Brøndsted Nielsen; Andrey E. Boguslavskiy; Albert Stolow; Theis I. Sølling
Dihydroazulenes are interesting because of their photoswitching behavior. While the ring-opening to vinylheptafulvalene (VHF) is light induced, the back reaction is known to proceed thermally. In the present paper, we show the first gas phase study of the ring-opening reaction of 2-phenyl-1,8a-dihydroazulene-1,1-dicarbonitrile (Ph-DHA) by means of time-resolved photoelectron spectroscopy which permits us to follow the ring-opening process. Moreover, we investigated s-trans-Ph-VHF in a series of transient absorption experiments, supported by ab initio computations, to understand the origin of the absence of light-induced ring-closure. The transient absorption results show a biexponential decay governed by a hitherto unknown state. This state is accessed within 1-2 ps and return to the ground state is probably driven through a cis-trans isomerization about the exocyclic C1═C2 double bond. The rapid decrease in potential energy disfavors internal rotation to s-cis-Ph-VHF, the structure that would precede the ring-closure reaction.
Chemistry: A European Journal | 2016
Anders B. Skov; Søren Lindbæk Broman; Anders S. Gertsen; Jonas Elm; Martyn Jevric; Martina Cacciarini; Anders Kadziola; Kurt V. Mikkelsen; Mogens Brøndsted Nielsen
Photochemical conversion of molecules into high-energy isomers that, after a stimulus, return to the original isomer presents a closed-cycle of light-harvesting, energy storage, and release. One challenge is to achieve a sufficiently high energy storage capacity. Here, we present efforts to tune the dihydroazulene/vinylheptafulvene (DHA/VHF) couple through loss/gain of aromaticity. Two derivatives were prepared, one with aromatic stabilization of DHA and the second of VHF. The consequences for the switching properties were elucidated. For the first type, sigmatropic rearrangements of DHA occurred upon irradiation. Formation of a VHF complex could be induced by a Lewis acid, but addition of H2 O resulted in immediate regeneration of DHA. For the second type, the VHF was too stable to convert into DHA. Calculations support the results and provide new targets. We predict that by removing one of the two CN groups at C-1 of the aromatic DHA, the heat storage capacity will be further increased, as will the life-time of the VHF. Calculations also reveal that a CN group at the fulvene ring retards the back-reaction, and we show synthetically that it can be introduced regioselectively.
Chemistry: A European Journal | 2015
Anne Ugleholdt Petersen; Søren Lindbæk Broman; Stine T. Olsen; Lin Du; Anders Kadziola; Thorsten Hansen; Henrik G. Kjaergaard; Kurt V. Mikkelsen; Mogens Brøndsted Nielsen
We present the synthesis and switching studies of systems with two photochromic dihydroazulene (DHA) units connected by a phenylene bridge at either para or meta positions, which correspond to a linear or cross-conjugated pathway between the photochromes. According to UV/Vis absorption and NMR spectroscopic measurements, the meta-phenylene-bridged DHA-DHA exhibited sequential light-induced ring openings of the two DHA units to their corresponding vinylheptafulvenes (VHFs). Initially, the VHF-DHA species was generated, and, ultimately, after continued irradiation, the VHF-VHF species. Studies in different solvents and quantum chemical calculations indicate that the excitation of DHA-VHF is no longer a local DHA excitation but a charge-transfer transition that involves the neighboring VHF unit. For the linearly conjugated para-phenylene-bridged dimer, electronic communication between the two units is so efficient that the photoactivity is reduced for both the DHA-DHA and DHA-VHF species, and DHA-DHA, DHA-VHF, and VHF-VHF were all present during irradiation. In all, by changing the bridging unit, we can control the degree of stepwise photoswitching.
Chemistry: A European Journal | 2016
Alexandru Vlasceanu; Søren Lindbæk Broman; Anders B. Skov; Martina Cacciarini; Anders Kadziola; Henrik G. Kjaergaard; Kurt V. Mikkelsen; Mogens Brøndsted Nielsen
The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release.
Pure and Applied Chemistry | 2010
Mogens Brøndsted Nielsen; Søren Lindbæk Broman; Michael Åxman Petersen; Asbjørn Sune Andersson; Tanja Skouw Jensen; Kristine Kilså; Anders Kadziola
Molecular photoswiches are important for the development of advanced materials and molecular electronics devices. The dihydroazulene (DHA) is a particularly attractive molecule as it undergoes a light-induced ring opening to a vinylheptafulvene (VHF) isomer with altered optical properties. While functionalization of the five-membered ring of DHA has been possible for the last 25 years, this was not the case for the seven-membered ring. This article summarizes our synthetic efforts in achieving this goal. Incorporation of an alkyne at C-7 was accomplished by (i) regioselective bromination of DHA, followed by (ii) elimination of HBr, and (iii) Pd-catalyzed cross-coupling with triisopropylsilylacetylene. Light-induced ring opening of this DHA followed by thermal ring closure provided a mixture of 6- and 7-substituted DHAs with different absorption characteristics. The isomer ratio was controlled by the wavelength of irradiation and the solvent polarity. The dibromide formed in the initial step served as a precursor for a 3-bromo-functionalized azulene that was employed as a building block for acetylenic scaffolding. Incorporation of a dithiafulvene (DTF) unit at the five-membered ring of DHA resulted in a significant red-shift in the longest-wavelength absorption and consequently a lowering of the energy required for ring opening. Incorporation of a redox-active tetrathiafulvalene (TTF) unit allowed for redox-controlled photoswitching.
Organic Letters | 2012
Søren Lindbæk Broman; Anne Ugleholdt Petersen; Christian G. Tortzen; Johan Vibenholt; Andrew D. Bond; Mogens Brøndsted Nielsen
Suitably functionalized vinylheptafulvenes (VHFs) act as thermoswitches undergoing ring closure to the corresponding dihydroazulenes (DHAs). Here we present the synthesis of a new such thermoswitch incorporating two heptafulvene rings on a dicyanoethylene unit. The synthetic protocol explores both the tropylium species as an electrophile and as a leaving group in the generation of the heptafulvene units. The thermally induced ring closure was enhanced as a result of two accessible sites for the reaction to occur.
Journal of Organic Chemistry | 2013
Martyn Jevric; Søren Lindbæk Broman; Mogens Brøndsted Nielsen
The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has attracted interest as a molecular switch for advanced materials and molecular electronics. We report here two synthetic approaches using palladium catalysis for synthesizing dihydroazulene (DHA) photoswitches with thioacetate anchoring groups intended for molecular electronics applications. The first methodology involves a Suzuki coupling using tert-butyl thioether protecting groups. Conversion to the thioacetate using boron tribromide/acetyl chloride results in the formation of the product as a mixture of regioisomers mediated by a ring-opening reaction. The second approach circumvents isomerization by the synthesis of stannanes as intermediates and their use in a Stille coupling. Although fully unsaturated azulenes are formed as byproducts during the synthesis of the DHA stannanes, this approach allowed the regioselective incorporation of the thioacetate anchoring group in either one of the two ends (positions 2 or 7) or at both.
Beilstein Journal of Organic Chemistry | 2012
Virginia Mazzanti; Martina Cacciarini; Søren Lindbæk Broman; Christian R. Parker; Magnus Schau-Magnussen; Andrew D. Bond; Mogens Brøndsted Nielsen
Summary Background: The dihydroazulene (DHA)/vinylheptafulvene (VHF) system (with two cyano groups at C1) functions as a photo-/thermoswitch. Direct ionic bromination of DHA has previously furnished a regioselective route to a 7,8-dibromide, which by elimination was converted to a 7-bromo-substituted DHA. This compound has served as a central building block for functionalization of the DHA by palladium-catalyzed cross-coupling reactions. The current work explores another bromination protocol for achieving the isomeric 3-bromo-DHA and also explores the outcome of additional bromination of this compound as well as of the known 7-bromo-DHA. Results: Radical bromination on two different VHFs by using N-bromosuccinimide/benzoyl peroxide and light, followed by a ring-closure reaction generated the corresponding 3-bromo-DHAs, as confirmed in one case by X-ray crystallography. According to a 1H NMR spectroscopic study, the ring closure of the brominated VHF seemed to occur readily under the reaction conditions. A subsequent bromination–elimination protocol provided a 3,7-dibromo-DHA. In contrast, treating the known 7-bromo-DHA with bromine generated a very labile species that was converted to a new 3,7-dibromoazulene, i.e., the fully unsaturated species. Azulenes were also found to form from brominated compounds when left standing for a long time in the solid state. Kinetics measurements reveal that the 3-bromo substituent enhances the rate of the thermal conversion of the VHF to DHA, which is opposite to the effect exerted by a bromo substituent in the seven-membered ring. Conclusion: Two general procedures for functionalizing the DHA core with a bromo substituent (at positions 3 and 7, respectively) are now available with the DHA as starting material.