Sornkanok Vimolmangkang
University of Illinois at Urbana–Champaign
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sornkanok Vimolmangkang.
Journal of Experimental Botany | 2011
Yuepeng Han; Danman Zheng; Sornkanok Vimolmangkang; Muhammad Awais Khan; Jonathan E. Beever; Schuyler S. Korban
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ∼421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ∼24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.
Plant Physiology | 2010
Yuepeng Han; Sornkanok Vimolmangkang; Ruth Elena Soria-Guerra; Sergio Rosales-Mendoza; Danman Zheng; Anatoli V. Lygin; Schuyler S. Korban
Three genes encoding flavonoid 3′-hydroxylase (F3′H) in apple (Malus × domestica), designated MdF3′HI, MdF3′HIIa, and MdF3′HIIb, have been identified. MdF3′HIIa and MdF3′HIIb are almost identical in amino acid sequences, and they are allelic, whereas MdF3′HI has 91% nucleotide sequence identity in the coding region to both MdF3′HIIa and MdF3′HIIb. MdF3′HI and MdF3′HII genes are mapped onto linkage groups 14 and 6, respectively, of the apple genome. Throughout the development of apple fruit, transcriptional levels of MdF3′H genes along with other anthocyanin biosynthesis genes are higher in the red-skinned cv Red Delicious than that in the yellow-skinned cv Golden Delicious. Moreover, patterns of MdF3′H gene expression correspond to accumulation patterns of flavonoids in apple fruit. These findings suggest that MdF3′H genes are coordinately expressed with other genes in the anthocyanin biosynthetic pathway in apple. The functionality of these apple F3′H genes has been demonstrated via their ectopic expression in both the Arabidopsis (Arabidopsis thaliana) transparent testa7-1 (tt7) mutant and tobacco (Nicotiana tabacum). When grown under nitrogen-deficient conditions, transgenic Arabidopsis tt7 seedlings expressing apple F3′H regained red color pigmentation and significantly accumulated both 4′-hydrylated pelargonidin and 3′,4′-hydrylated cyanidin. When compared with wild-type plants, flowers of transgenic tobacco lines overexpressing apple F3′H genes exhibited enhanced red color pigmentation. This suggests that the F3′H enzyme may coordinately interact with other flavonoid enzymes in the anthocyanin biosynthesis pathway.
Journal of Experimental Botany | 2012
Yuepeng Han; Sornkanok Vimolmangkang; Ruth Elena Soria-Guerra; Schuyler S. Korban
Three genes encoding anthocyanidin reductase (ANR) in apple (Malus×domestica Borkh.), designated MdANR1, MdANR2a, and MdANR2b, have been cloned and characterized. MdANR1 shows 91% identity in coding DNA sequences with MdANR2a and MdANR2b, while MdANR2a and MdANR2b are allelic and share 99% nucleotide sequence identity in the coding region. MdANR1 and MdANR2 genes are located on linkage groups 10 and 5, respectively. Expression levels of both MdANR1 and MdANR2 genes are generally higher in yellow-skinned cv. Golden Delicious than in red-skinned cv. Red Delicious. Transcript accumulation of MdANR1 and MdANR2 genes in fruits gradually decreased throughout fruit development. Ectopic expression of apple MdANR genes in tobacco positively and negatively regulates the biosynthesis of proanthocyanidins (PAs) and anthocyanin, respectively, resulting in white, pale pink-coloured, and white/red variegated flowers. The accumulation of anthocyanin is significantly reduced in all tobacco transgenic flowers, while catechin and epicatechin contents in transgenic flowers are significantly higher than those in flowers of wild-type plants. The inhibition of anthocyanin synthesis in tobacco transgenic flowers overexpressing MdANR genes is probably attributed to down-regulation of CHALCONE ISOMERASE (CHI) and DIHYDROFLAVONOL-4-REDUCTASE (DFR) genes involved in the anthocyanin pathway. Interestingly, several transgenic lines show no detectable transcripts of the gene encoding leucoanthocyanidin reductase (LAR) in flowers, but accumulate higher levels of catechin in flowers of transgenic plants than those of wild-type plants. This finding suggests that the ANR gene may be capable of generating catechin via an alternative route, although this mechanism is yet to be further elucidated.
BMC Plant Biology | 2013
Sornkanok Vimolmangkang; Yuepeng Han; Guochao Wei; Schuyler S. Korban
BackgroundRed coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits.ResultsIn this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this TF is involved in regulation of flower development.ConclusionsThis study has identified a novel MYB transcription factor in the apple genome. This TF, designated as MdMYB3, is involved in transcriptional activation of several flavonoid pathway genes. Moreover, this TF not only regulates the accumulation of anthocyanin in the skin of apple fruits, but it is also involved in the regulation of flower development, particularly that of pistil development.
BMC Plant Biology | 2014
Ying Zhou; Hui Zhou; Kui Lin-Wang; Sornkanok Vimolmangkang; Richard V. Espley; Lu Wang; Andrew C. Allan; Yuepeng Han
BackgroundLeaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach.ResultsThe red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves.ConclusionsActivation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.
Plant Physiology | 2014
Jun Cheng; Guochao Wei; Hui Zhou; Chao Gu; Sornkanok Vimolmangkang; Liao Liao; Yuepeng Han
Diversification of anthocyanins in peach is attributed to glycosylation and methylation. Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants.
PLOS ONE | 2011
Dongping Wang; Bernarda Calla; Sornkanok Vimolmangkang; Xia Wu; Schuyler S. Korban; Steven C. Huber; Steven J. Clough; Youfu Zhao
YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant.
Planta | 2012
Sornkanok Vimolmangkang; Ksenija Gasic; Ruth Elena Soria-Guerra; Sergio Rosales-Mendoza; Leticia Moreno-Fierros; Schuyler S. Korban
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a serious disease of swine and contributes to severe worldwide economic losses in swine production. Current vaccines against PRRS rely on the use of an attenuated-live virus; however, these are unreliable. Thus, alternative effective vaccines against PRRS are needed. Plant-based subunit vaccines offer viable, safe, and environmentally friendly alternatives to conventional vaccines. In this study, efforts have been undertaken to develop a soybean-based vaccine against PRRSV. A construct carrying a synthesized PRRSV-ORF7 antigen, nucleocapsid N protein of PRRSV, has been introduced into soybean, Glycine max (L.) Merrill. cvs. Jack and Kunitz, using Agrobacterium-mediated transformation. Transgenic plants carrying the sORF7 transgene have been successfully generated. Molecular analyses of T0 plants confirmed integration of the transgene and transcription of the PRRSV-ORF7. Presence of a 15-kDa protein in seeds of T1 transgenic lines was confirmed by Western blot analysis using PRRSV-ORF7 antisera. The amount of the antigenic protein accumulating in seeds of these transgenic lines was up to 0.65% of the total soluble protein (TSP). A significant induction of a specific immune response, both humoral and mucosal, against PRRSV-ORF7 was observed following intragastric immunization of BALB/c female mice with transgenic soybean seeds. These findings provide a ‘proof of concept’, and serve as a critical step in the development of a subunit plant-based vaccine against PRRS.
Frontiers in Plant Science | 2015
Liao Liao; Sornkanok Vimolmangkang; Guochao Wei; Hui Zhou; Schuyler S. Korban; Yuepeng Han
Proanthocyanidins (PAs) are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.
Journal of Experimental Botany | 2016
Chao Gu; Lu Wang; Wei Wang; Hui Zhou; Baiquan Ma; Hongyu Zheng; Ting Fang; Collins Ogutu; Sornkanok Vimolmangkang; Yuepeng Han
Highlight Copy number variation at the F-M locus plays a driving role in flesh texture diversification in peach.