Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sotaro Chiba is active.

Publication


Featured researches published by Sotaro Chiba.


Journal of Virology | 2009

A Novel Bipartite Double-Stranded RNA Mycovirus from the White Root Rot Fungus Rosellinia necatrix: Molecular and Biological Characterization, Taxonomic Considerations, and Potential for Biological Control

Sotaro Chiba; Lakha Salaipeth; Yu Hsin Lin; Atsuko Sasaki; Satoko Kanematsu; Nobuhiro Suzuki

ABSTRACT White root rot, caused by the ascomycete Rosellinia necatrix, is a devastating disease worldwide, particularly in fruit trees in Japan. Here we report on the biological and molecular properties of a novel bipartite double-stranded RNA (dsRNA) virus encompassing dsRNA-1 (8,931 bp) and dsRNA-2 (7,180 bp), which was isolated from a field strain of R. necatrix, W779. Besides the strictly conserved 5′ (24 nt) and 3′ (8 nt) terminal sequences, both segments show high levels of sequence similarity in the long 5′ untranslated region of approximately 1.6 kbp. dsRNA-1 and -2 each possess two open reading frames (ORFs) named ORF1 to -4. Although the protein encoded by 3′-proximal ORF2 on dsRNA-1 shows sequence identities of 22 to 32% with RNA-dependent RNA polymerases from members of the families Totiviridae and Chrysoviridae, the remaining three virus-encoded proteins lack sequence similarities with any reported mycovirus proteins. Phylogenetic analysis showed that the W779 virus belongs to a separate clade distinct from those of other known mycoviruses. Purified virions ∼50 nm in diameter consisted of dsRNA-1 and -2 and a single major capsid protein of 135 kDa, which was shown by peptide mass fingerprinting to be encoded by dsRNA-1 ORF1. We developed a transfection protocol using purified virions to show that the virus was responsible for reduction of virulence and mycelial growth in several host strains. These combined results indicate that the W779 virus is a novel bipartite dsRNA virus with potential for biological control (virocontrol), named Rosellinia necatrix megabirnavirus 1 (RnMBV1), that possibly belongs to a new virus family.


PLOS Pathogens | 2011

Widespread Endogenization of Genome Sequences of Non-Retroviral RNA Viruses into Plant Genomes

Sotaro Chiba; Hideki Kondo; Akio Tani; Daisuke Saisho; Wataru Sakamoto; Satoko Kanematsu; Nobuhiro Suzuki

Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.


Virology | 2012

A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix

Yu Hsin Lin; Sotaro Chiba; Akio Tani; Hideki Kondo; Atsuko Sasaki; Satoko Kanematsu; Nobuhiro Suzuki

Here we report the biological and molecular attributes of a novel dsRNA virus isolated from Rosellinia necatrix, a filamentous phytopathogenic fungus. The virus, termed Rosellinia necatrix quadrivirus 1 (RnQV1), forms rigid spherical particles approximately 45 nm in diameter in infected mycelia. The particles contain 4 dsRNA segments, dsRNA1 to dsRNA4, with a size range of 4.9 to 3.7 kbp, each possessing a single large ORF. A comparison of the virus-infected and -cured isogenic fungal strains suggested that RnQV1 infection has no appreciable phenotypic effects. Phylogenetic analysis using the dsRNA3-encoded RdRp sequence revealed that RnQV1 is more distantly related to quadripartite chrysoviruses than to monopartite totiviruses, and is placed in a distinct group from other mycoviruses. No significant sequence similarities were evident between known proteins and RnQV1 structural proteins shown to be encoded by dsRNA2 or dsRNA4. These suggest that RnQV1 is a novel latent virus, belonging to a new family.


Journal of Virology | 2013

Effects of Defective-interfering RNA on Symptom Induction by, and Replication of, a Novel Partitivirus from a Phytopathogenic Fungus Rosellinia necatrix.

Sotaro Chiba; Yu Hsin Lin; Hideki Kondo; Satoko Kanematsu; Nobuhiro Suzuki

ABSTRACT A novel mycovirus termed Rosellinia necatrix partitivirus 2 (RnPV2), isolated from a phytopathogenic fungus, Rosellinina necatrix strain W57, was molecularly and biologically characterized in both natural and experimental host fungi. Three double-stranded RNA (dsRNA) segments, dsRNA1, dsRNA2, and defective interfering dsRNA1 (DI-dsRNA1), whose sizes were approximately 2.0, 1.8, and 1.7 kbp, respectively, were detected in W57. While the dsRNA2 sequence, encoding the coat protein, was reported previously, dsRNA1 and DI-dsRNA1 were shown to encode competent and defective (truncated) RNA-dependent RNA polymerase, respectively. Artificial introduction of RnPV2 into an RNA silencing-defective, Dicer-like 2 knockout mutant (Δdcl-2) of a nonnatural host, Cryphonectria parasitica (chestnut blight fungus), resulted in successful infection by the DI-dsRNA1-carrying and -free RnPV2. The DI-dsRNA1-free RnPV2 strain was characterized by a higher ratio of accumulation of the intact dsRNA1 to dsRNA2, enhanced replication and severer symptom expression, compared with the DI-carrying strain. These findings confirmed the nature of DI-dsRNA1 as a DI-RNA. Both viral strains replicated to higher levels in a Δdcl-2 mutant than in a wild-type C. parasitica fungal strain (EP155) and induced severe symptoms in the Δdcl-2 mutant but subtle symptoms in EP155, indicating that the host RNA silencing targets the partitivirus. No obvious phenotypic effects of infection by either virus strain were detected in the natural host fungus. These combined results represent the first example of a partitivirus with DI-RNA that alters viral symptom induction in a host-dependent manner.


Virology | 2013

Evidence for negative-strand RNA virus infection in fungi.

Hideki Kondo; Sotaro Chiba; Kazuhiro Toyoda; Nobuhiro Suzuki

Fungal viruses comprise two groups: a major group of five families with double-stranded RNA genomes and a minor group with positive-sense single-stranded (ss)RNA genomes. Although many fungal viruses have been identified, no negative-stranded (-)ssRNA mycoviruses have been reported. Here we present two lines of evidence suggesting the presence of (-)ssRNA viruses in filamentous fungi based on an exhaustive search using extant (-)ssRNA viruses as queries. This revealed (-)ssRNA virus L protein-like sequences in the genome of a phytopathogenic obligate ascomycete, Erysiphe pisi. A similar search for (-)ssRNA viruses in fungal transcriptome shotgun assembly libraries demonstrated that two independent libraries from Sclerotinia homoeocarpa, another phytopathogenic ascomycete, contained several sequences considered to correspond to the entire mononegavirus L gene and likely originating from an infecting (-)ssRNA virus. These results provide strong evidence for both ancient and extant (-)ssRNA virus infections in fungi.


Journal of Virology | 2013

A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix is infectious as particles and targeted by RNA silencing

Sotaro Chiba; Yu Hsin Lin; Hideki Kondo; Satoko Kanematsu; Nobuhiro Suzuki

ABSTRACT A novel victorivirus, termed Rosellinia necatrix victorivirus 1 (RnVV1), was isolated from a plant pathogenic ascomycete, white root rot fungus Rosellinia necatrix, coinfected with a partitivirus. The virus was molecularly and biologically characterized using the natural and experimental hosts (chestnut blight fungus, Cryphonectria parasitica). RnVV1 was shown to have typical molecular victorivirus attributes, including a monopartite double-stranded RNA genome with two open reading frames (ORFs) encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), a UAAUG pentamer presumed to facilitate the coupled termination/reinitiation for translation of the two ORFs, a spherical particle structure ∼40 nm in diameter, and moderate levels of CP and RdRp sequence identity (34 to 58%) to those of members of the genus Victorivirus within the family Totiviridae. A reproducible transfection system with purified RnVV1 virions was developed for the two distinct fungal hosts. Transfection assay with purified RnVV1 virions combined with virus elimination by hyphal tipping showed that the effects of RnVV1 on the phenotype of the natural host were negligible. Interestingly, comparison of the RNA silencing-competent (standard strain EP155) and -defective (Δdcl-2) strains of C. parasitica infected with RnVV1 showed that RNA silencing acted against the virus to repress its replication, which was restored by coinfection with hypovirus or transgenic expression of an RNA silencing suppressor, hypovirus p29. Phenotypic changes were observed in the Δdcl-2 strain but not in EP155. This is the first reported study on the host range expansion of a Totiviridae member that is targeted by RNA silencing.


Journal of General Virology | 2014

Biological properties and expression strategy of rosellinia necatrix megabirnavirus 1 analysed in an experimental host, Cryphonectria parasitica.

Lakha Salaipeth; Sotaro Chiba; Ana Eusebio-Cope; Satoko Kanematsu; Nobuhiro Suzuki

Rosellinia necatrix megabirnavirus 1 (RnMBV1) with a bipartite dsRNA genome (dsRNA1 and dsRNA2) confers hypovirulence to its natural host, the white root rot fungus, and is thus regarded as a potential virocontrol (biocontrol) agent. Each segment has two large ORFs: ORF1 and partially overlapping ORF2 on dsRNA1 encode the major capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), whilst ORF3 and ORF4 on dsRNA2 encode polypeptides with unknown functions. Here, we report the biological and molecular characterization of this virus in the chestnut blight fungus, Cryphonectria parasitica, a filamentous fungus that has been used as a model for mycovirus research. Transfection with purified RnMBV1 particles into an RNA-silencing-defective strain (Δdcl-2) of C. parasitica and subsequent anastomosis with the WT strain (EP155) resulted in stable persistent infection in both host strains. However, accumulation levels in the two strains were different, being ~20-fold higher in Δdcl-2 than in EP155. Intriguingly, whilst RnMBV1 reduced both virulence and growth rate in Δdcl-2, it attenuated virulence without affecting significantly other traits in EP155. Western blot analysis using antiserum against recombinant proteins encoded by either ORF1 or ORF2 demonstrated the presence of a 250 kDa protein in purified virion preparations, suggesting that RdRp is expressed as a CP fusion product via a -1 frameshift. Antiserum against the ORF3-encoded protein allowed the detection of 150, 30 and 23 kDa polypeptides specifically in RnMBV1-infected mycelia. Some properties of an RnMBV1 mutant with genome rearrangements, which occurred after transfection of Δdcl-2 and EP155, were also presented. This study provides an additional example of C. parasitica serving as a versatile, heterologous fungus for exploring virus-host interactions and virus gene expression strategies.


Frontiers in Microbiology | 2014

A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses.

Rui Zhang; Shengxue Liu; Sotaro Chiba; Hideki Kondo; Satoko Kanematsu; Nobuhiro Suzuki

Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5′-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1 and FgV1.


Nucleic Acids Research | 2009

Coupled termination/reinitiation for translation of the downstream open reading frame B of the prototypic hypovirus CHV1-EP713

Li Hua Guo; Liying Sun; Sotaro Chiba; Hiroyuki Araki; Nobuhiro Suzuki

Cryphonectria hypovirus 1 (CHV1), associated with the picorna-like superfamily, infects the chestnut blight fungus and attenuates the virulence of the host fungus. The genomic RNA of the virus has two continuous open reading frames, A and B, separated by the pentanucleotide UAAUG. We present here evidence suggesting that ORF B is translated from genome-sized virus mRNA by a coupled termination/reinitiation mechanism mediated by the pentamer. In the coupled translation, the overlapping UAA and AUG triplets serve as the stop codon of ORF A and the initiator of ORF B, respectively. This was established by the use of a luciferase assay with a basic construct containing the ORF A sequence and the firefly luciferase gene while retaining the pentamer between the two coding sequences. The proportion of ribosomes reinitiating translation after terminating was determined to be 2.5–4.4% by three independent assay systems in fungal and insect cells. Use of a series of mutant constructs identified two sequence elements, the pentamer and the p40 sequence, that affect the efficiency of coupled translation and virus replication. Together, these results provide the first example of coupled translation facilitated by the pentanucleotide UAAUG in the kingdom Fungi. The mechanism by which the preceding p40-coding sequence promotes reinitiation is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus

Sotaro Chiba; Nobuhiro Suzuki

Significance RNA silencing-mediated virus interference or cross-protection generally occurs between closely related strains of a single virus species. Here, we show strong virus interference between unrelated RNA viruses in the filamentous ascomycetous fungus, Cryphonectria parasitica. Lateral transmission and replication of a totivirus with an undivided dsRNA genome was severely inhibited by a silencing suppressor deletion mutant of the prototype hypovirus with a positive-strand RNA genome or the prototype mycoreovirus with an 11-segmented dsRNA genome, and even by transgenic expression of hairpin RNA of an endogenous fungal gene. This interference required high-level expression of the key RNA silencing gene, dicer-like 2 (dcl2), but not necessarily argonaute-like 2 (agl2). This study provides insight into broad-spectrum virus control. Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing.

Collaboration


Dive into the Sotaro Chiba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoko Kanematsu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge