Sotirios Fragkostefanakis
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sotirios Fragkostefanakis.
Frontiers in Plant Science | 2013
Kamila Lucia Bokszczanin; Sotirios Fragkostefanakis; Hamed Bostan; Arnaud G. Bovy; Palak Chaturvedi; Maria Luisa Chiusano; Nurit Firon; Rina Iannacone; Sridharan Jegadeesan; Krzysztof Klaczynskid; Hanjing Li; Celestina Mariani; Florian Müller; Puneet Paul; Marine J. Paupière; Etan Pressman; Ivo Rieu; Klaus Dieter Scharf; Enrico Schleiff; Adriaan W. van Heusden; Wim H. Vriezen; Wolfram Weckwerth; Peter Winter
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Plant Cell and Environment | 2015
Sotirios Fragkostefanakis; Sascha Röth; Enrico Schleiff; Klaus-Dieter Scharf
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Bioinformatics and Biology Insights | 2015
Stefan Simm; Sotirios Fragkostefanakis; Puneet Paul; Mario Keller; Jens Einloft; Klaus-Dieter Scharf; Enrico Schleiff
Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed.
Plant Cell and Environment | 2015
Sotirios Fragkostefanakis; Stefan Simm; Puneet Paul; Daniela Bublak; Klaus-Dieter Scharf; Enrico Schleiff
Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato.
Sexual Plant Reproduction | 2016
Anida Mesihovic; Rina Iannacone; Nurit Firon; Sotirios Fragkostefanakis
Key messagePollen thermotolerance.AbstractGlobal warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.
Plant Physiology | 2016
Sotirios Fragkostefanakis; Anida Mesihovic; Stefan Simm; Marine J. Paupière; Yangjie Hu; Puneet Paul; Shravan Kumar Mishra; Bettina Tschiersch; Klaus Theres; Arnaud G. Bovy; Enrico Schleiff; Klaus Dieter Scharf
A heat stress transcription factor is involved in tomato pollen thermotolerance, contributing to stress responses as well as the abundance of chaperones in the priming program activated during microsporogenesis. Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS. In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR. HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR. This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis.
Sexual Plant Reproduction | 2016
Sotirios Fragkostefanakis; Anida Mesihovic; Yangjie Hu; Enrico Schleiff
Key messageImportance of the UPR for pollen.AbstractPollen is particularly sensitive to environmental conditions that disturb protein homeostasis, such as higher temperatures. Their survival is dependent on subcellular stress response systems, one of which maintains protein homeostasis in the endoplasmic reticulum (ER). Disturbance of ER proteostasis due to stress leads to the activation of the unfolded protein response (UPR) that mitigates stress damage mainly by increasing ER-folding capacity and reducing folding demands. The UPR is controlled by ER membrane-associated transcription factors and an RNA splicing factor. They are important components of abiotic stress responses including general heat stress response and thermotolerance. In addition to responding to environmental stresses, the UPR is implicated in developmental processes required for successful male gametophyte development and fertilization. Consequently, defects in the UPR can lead to pollen abortion and male sterility. Several UPR components are involved in the elaboration of the ER network, which is required for pollen germination and polar tube growth. Transcriptome and proteome analyses have shown that components of the ER-folding machinery and the UPR are upregulated at specific stages of pollen development supporting elevated demands for secretion. Furthermore, genetic studies have revealed that knockout mutants of UPR genes are defective in producing viable or competitive pollen. In this review, we discuss recent findings regarding the importance of the UPR for both pollen development and stress response.
PLOS ONE | 2014
Puneet Paul; Stefan Simm; Oliver Mirus; Klaus-Dieter Scharf; Sotirios Fragkostefanakis; Enrico Schleiff
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the ‘core-set’ of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
BMC Genomics | 2013
Puneet Paul; Stefan Simm; Andreas Blaumeiser; Klaus-Dieter Scharf; Sotirios Fragkostefanakis; Oliver Mirus; Enrico Schleiff
BackgroundProtein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species. We bioinformatically determined the inventory of putative translocation factors in tomato (Solanum lycopersicum) by orthologue search and domain architecture analyses. In addition, we investigated the diversity of such systems by comparing our findings to the model organisms Saccharomyces cerevisiae, Arabidopsis thaliana and 12 other plant species.ResultsThe literature search end up in a total of 130 translocation components in yeast and A. thaliana, which are either experimentally confirmed or homologous to experimentally confirmed factors. From our bioinformatic analysis (PGAP and OrthoMCL), we identified (co-)orthologues in plants, which in combination yielded 148 and 143 orthologues in A. thaliana and S. lycopersicum, respectively. Interestingly, we traced 82% overlap in findings from both approaches though we did not find any orthologues for 27% of the factors by either procedure. In turn, 29% of the factors displayed the presence of more than one (co-)orthologue in tomato. Moreover, our analysis revealed that the genomic composition of the translocation machineries in the bryophyte Physcomitrella patens resemble more to higher plants than to single celled green algae. The monocots (Z. mays and O. sativa) follow more or less a similar conservation pattern for encoding the translocon components. In contrast, a diverse pattern was observed in different eudicots.ConclusionsThe orthologue search shows in most cases a clear conservation of components of the translocation pathways/machineries. Only the Get-dependent integration of tail-anchored proteins seems to be distinct. Further, the complexity of the translocation pathway in terms of existing orthologues seems to vary among plant species. This might be the consequence of palaeoploidisation during evolution in plants; lineage specific whole genome duplications in Arabidopsis thaliana and triplications in Solanum lycopersicum.
DNA Research | 2016
Mario Keller; Yangjie Hu; Anida Mesihovic; Sotirios Fragkostefanakis; Enrico Schleiff; Stefan Simm
Abstract Alternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire spectrum of HS-related AS, samples taken directly after HS and after recovery were combined and analysed by RNA-seq. For nearly 9,200 genes per cultivar, we observed at least one AS event under HS. In comparison to control, for one cultivar we observed 76% more genes with intron retention (IR) or exon skipping (ES) under HS. Furthermore, 2,343 genes had at least one transcript with IR or ES accumulated under HS in both cultivars. These genes are involved in biological processes like protein folding, gene expression and heat response. Transcriptome assembly of these genes revealed that most of the alternative spliced transcripts possess truncated coding sequences resulting in partial or total loss of functional domains. Moreover, 141 HS specific and 22 HS repressed transcripts were identified. Further on, we propose AS as layer of stress response regulating constitutively expressed genes under HS by isoform abundance.