Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Souichi Telada is active.

Publication


Featured researches published by Souichi Telada.


International Journal of Modern Physics D | 1999

LARGE-SCALE CRYOGENIC GRAVITATIONAL WAVE TELESCOPE

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Daisuke Tatsumi; Shuichi Sato; Hideki Ishizuka; Masa Katsu Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Mitsuhiro Fukushima; Koichi Waseda; Souichi Telada; Akitoshi Ueda; T. Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Kimio Tsubono; Keita Kawabe; Masaki Ando; Ken-ichi Ueda; Hitoki Yoneda; Mitsuru Musha; Norikatsu Mio; Shigenori Moriwaki; Akito Araya

We present here the Large-scale Cryogenic Gravitational wave Telescope (LCGT) project which is aimed to improve the sensitivity of the existing gravitational wave projects by ten times. LCGT is the project constructing the km-scale gravitational wave detector in Japan succeeding the TAMA project, which adopts cryogenic mirrors with a higher power laser. We are planing to build it in an underground site in Kamioka mine. If its target sensitivity is attained, we will be able to catch a few events per month.


Classical and Quantum Gravity | 2003

Present status of large-scale cryogenic gravitational wave telescope

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Takashi Uchiyama; Hideki Ishitsuka; Kazuhiro Yamamoto; K. Kasahara; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Shigeo Nagano; Y. Tsunesada; Zong Hong Zhu; T. Shintomi; Akira Yamamoto; T. Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori

The large-scale cryogenic gravitational wave telescope (LCGT) is the future project of the Japanese gravitational wave group. Two sets of 3 km arm length laser interferometric gravitational wave detectors will be built in a tunnel of Kamioka mine in Japan. LCGT will detect chirp waves from binary neutron star coalescence at 240 Mpc away with a S/N of 10. The expected number of detectable events in a year is two or three. To achieve the required sensitivity, several advanced techniques will be employed such as a low-frequency vibration-isolation system, a suspension point interferometer, cryogenic mirrors, a resonant side band extraction method, a high-power laser system and so on. We hope that the beginning of the project will be in 2005 and the observations will start in 2009.


Physical Review Letters | 2012

Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.

Takashi Uchiyama; Shinji Miyoki; Souichi Telada; Kazuhiro Yamamoto; Masatake Ohashi; K. Agatsuma; Koji Arai; Masa-Katsu Fujimoto; T. Haruyama; Seiji Kawamura; O. Miyakawa; Naoko Ohishi; Takanori Saito; T. Shintomi; Toshikazu Suzuki; Ryutaro Takahashi; Daisuke Tatsumi

The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirrors thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17 and 18 K. The detector sensitivity, which was limited by the mirrors thermal fluctuation at room temperature, was improved in the frequency range of 90 to 240 Hz by cooling the mirrors. The improved sensitivity reached a maximum of 2.2×10(-19) m/√Hz at 165 Hz.


Classical and Quantum Gravity | 2006

The CLIO project

Shinji Miyoki; Takashi Uchiyama; Kazuhiro Yamamoto; Masatake Ohashi; Kazuaki Kuroda; Tomotada Akutsu; S. Kamagasako; Noriyasu Nakagawa; Masao Tokunari; K. Kasahara; Souichi Telada; Takayuki Tomaru; T. Suzuki; Nobuaki Sato; T. Shintomi; T. Haruyama; Akira Yamamoto; Daisuke Tatsumi; Masaki Ando; Akito Araya; A. Takamori; Shuzo Takemoto; H Momose; H Hayakawa; Wataru Morii; Junpei Akamatsu

The CLIO project including a 100 m baseline cryogenic gravitational wave laser interferometer and a 100 m baseline geophysical strain meter was conducted in the Kamioka mine in Japan to investigate the technical feasibility of the large-scale cryogenic gravitational wave telescope (LCGT), which is planned to be constructed in the same Kamioka mine with 30 times longer baseline than CLIO, and to demonstrate the collaborative operation between these instruments about long-term continuous operation and gravitational wave signal veto analysis. About the cryogenic gravitational wave interferometer, the whole vacuum system and four cryostats, which house and cool sapphire mirrors, were constructed, and the required vacuum level of 10 −6 mbar and the temperature of 8 K at the inner radiation shield in the cryostat were achieved. About the geophysical strain meter, the obtained geophysical strain in the Kamioka mine was successfully simulated with a finite element model with a good agreement with less than 5% error. The strain meter also verified a permanent ground step change of micrometre order due to some earthquakes. We present the recent progress about the CLIO project.


Classical and Quantum Gravity | 2009

Status of Japanese gravitational wave detectors

Koji Arai; Ryutaro Takahashi; Daisuke Tatsumi; K. Izumi; Yaka Wakabayashi; H. Ishizaki; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale; Takashi Uchiyama; O. Miyakawa; Shinji Miyoki; K. Agatsuma; Takanori Saito; Masatake Ohashi; Kenta Kuroda; I. Nakatani; Souichi Telada; Kazuhiro Yamamoto; Takayuki Tomaru; T. Suzuki; T. Haruyama; Nobuaki Sato; Akira Yamamoto

The Large-scale Cryogenic Gravitational wave Telescope (LCGT) is planned as a future Japanese project for gravitational wave detection. A 3 km interferometer will be built in an underground mine at Kamioka. Cryogenic sapphire mirrors are going to be employed for the test masses. For the demonstration of LCGT technologies, two prototype interferometers, TAMA300 and CLIO, are being developed. This paper describes the current status of the LCGT project and the two prototype interferometers.


Applied Optics | 1999

Absolute-length determination of a long-baseline Fabry-Perot cavity by means of resonating modulation sidebands.

Akito Araya; Souichi Telada; Kuniharu Tochikubo; Shinsuke Taniguchi; Ryutaro Takahashi; Keita Kawabe; Daisuke Tatsumi; Toshitaka Yamazaki; Seiji Kawamura; Shinji Miyoki; Shigenori Moriwaki; Mitsuru Musha; Shigeo Nagano; Masa-Katsu Fujimoto; Kazuo Horikoshi; Norikatsu Mio; Yutaka Naito; A. Takamori; Kazuhiro Yamamoto

A new method has been demonstrated for absolute-length measurements of a long-baseline Fabry-Perot cavity by use of phase-modulated light. This method is based on determination of a free spectral range (FSR) of the cavity from the frequency difference between a carrier and phase-modulation sidebands, both of which resonate in the cavity. Sensitive response of the Fabry-Perot cavity near resonant frequencies ensures accurate determination of the FSR and thus of the absolute length of the cavity. This method was applied to a 300-m Fabry-Perot cavity of the TAMA gravitational wave detector that is being developed at the National Astronomical Observatory, Tokyo. With a modulation frequency of approximately 12 MHz, we successfully determined the absolute cavity length with resolution of 1 microm (3 x 10(-9) in strain) and observed local ground strain variations of 6 x 10(-8).


Classical and Quantum Gravity | 2002

Japanese large-scale interferometers

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Hideki Ishizuka; C.T Taylor; Kazuhiro Yamamoto; O. Miyakawa; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Takakazu Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takashi Uchiyama; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori; Kenji Numata; Ken-ichi Ueda

The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry–Perot–Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R&D.


Classical and Quantum Gravity | 2004

Status of the CLIO project

Shinji Miyoki; Takashi Uchiyama; Kazuhiro Yamamoto; H Hayakawa; K. Kasahara; Hideki Ishitsuka; Masatake Ohashi; Kazuaki Kuroda; Daisuke Tatsumi; Souichi Telada; Masaki Ando; Takayuki Tomaru; T. Suzuki; Nobuaki Sato; T. Haruyama; Y Higashi; Y. Saito; Akira Yamamoto; T. Shintomi; Akito Araya; Shuzo Takemoto; Toshihiro Higashi; H Momose; Junpei Akamatsu; Wataru Morii

The CLIO project involves the Cryogenic Laser Interferometer Observatory (CLIO) detector complex for gravitational wave detection and the Kamioka Laser Interferometric Strainmeter for the acquisition of geophysical data. CLIO has been constructed to demonstrate the feasibility of a future project, the Large-scale Cryogenic Gravitational wave Telescope (LCGT). It will utilize the low seismic and stable environment of the Kamioka mine as well as sapphire mirrors and suspension fibres at low temperature to reduce thermal noise. We designed CLIO to have a noise level limited by the thermal noise of sapphire mirrors and sapphire suspension fibres, which vary from 3 × 10−19 m Hz−1/2 at 300 K to 2 × 10−20 m Hz−1/2 at 20 K around 100 Hz. The strainmeter has already succeeded in monitoring the Earths tidal motion with a strain sensitivity of 2 × 10−12. The seismic noise veto between these same-scale interferometers is expected to provide an effective means of data selection for the gravitational wave signal analysis, and the ground motion data obtained by the strainmeter will help to maintain the stable operation of CLIO.


Applied Optics | 1997

Optical mode cleaner with suspended mirrors

Akito Araya; Norikatsu Mio; Kimio Tsubono; Koya Suehiro; Souichi Telada; Masatake Ohashi; Masa-Katsu Fujimoto

We report on the development of a new type of mode cleaner that reduces any geometric noise of the laser beam in an interferometric gravitational-wave detector. The mode cleaner is a Fabry-Perot cavity that comprises independently suspended mirrors and works as a frequency-stabilization reference as well as a mode selector; the length of the cavity is 1 m. Stand-alone tests have shown at least a 30-dB reduction in the geometric fluctuation of the beam and a 60-dB reduction of the frequency noise of the laser. We have also succeeded in operating a 20-m Fabry-Perot prototype detector (at the National Astronomical Observatory, Tokyo, Japan) by using this mode cleaner.


Classical and Quantum Gravity | 2003

Design and construction status of CLIO

Masatake Ohashi; Kazuaki Kuroda; Shinji Miyoki; Takashi Uchiyama; Kazuhiro Yamamoto; K. Kasahara; T. Shintomi; Akira Yamamoto; T. Haruyama; Yoshio Saito; Yasuo Higashi; T. Suzuki; Nobuaki Sato; Takayuki Tomaru; Daisuke Tatsumi; Souichi Telada; Masaki Ando; Akito Araya; Shuzo Takemoto; Toshihiro Higashi; H Momose; Junpei Akamatsu; Wataru Morii

Construction of CLIO (cryogenic laser interferometer observatory) with 100 m baseline length has begun in the Kamioka mine. The tunnel for CLIO has been dug and infrastructure work is now in progress. CLIO is the final step to LCGT (large scale cryogenic gravitational wave telescope) and the first practical construction of a cryogenic interferometer in the world. The objective of CLIO is to demonstrate two of three features of LCGT, which are to utilize the quietness and stable environment of the underground site and to adopt cryogenic sapphire mirrors for thermal noise reduction. Also, it is a joint project by gravitational wave and geophysics researchers. CLIO has a locked Fabry–Perot configuration equipped with ring mode cleaners and cryocoolers to cool the sapphire mirrors to 20 K. The noise level of CLIO is designed to trace the thermoelastic noise of sapphire mirrors which varies from 10−18 m Hz−1/2 at 300 K to 10−19 m Hz−1/2 at 20 K around 100 Hz. A 7 m single-arm cryogenic test facility has been built at ICRR (Institute for Cosmic Ray Research), while the 20 m room temperature interferometer is in operation at Kamioka. Technical knowledge developed by these prototypes will be leveraged to realize CLIO.

Collaboration


Dive into the Souichi Telada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge