Soujit Sen Gupta
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soujit Sen Gupta.
Journal of Applied Physics | 2011
Soujit Sen Gupta; V. Manoj Siva; Sreenath Krishnan; T. S. Sreeprasad; Pawan K. Singh; T. Pradeep; Sarit K. Das
This paper envisages a mechanism of heat conduction behind the thermal conductivity enhancement observed in graphene nanofluids. Graphene nanofluids have been prepared, characterized, and their thermal conductivity was measured using the transient hot wire method. The enhancements in thermal conductivity are substantial even at lower concentrations and are not predicted by the classical Maxwell model. The enhancement also shows strong temperature dependence which is unlike its carbon predecessors, carbon nanotube (CNT) and graphene oxide nanofluids. It is also seen that the magnitude of enhancement is in-between CNT and metallic/metal oxide nanofluids. This could be an indication that the mechanism of heat conduction is a combination of percolation in CNT and Brownian motion and micro convection effects in metallic/metal oxide nanofluids, leading to a strong proposition of a hybrid model.
ACS Applied Materials & Interfaces | 2012
Soujit Sen Gupta; T. S. Sreeprasad; Shihabudheen M. Maliyekkal; Sarit K. Das; T. Pradeep
This paper describes a green method for the synthesis of graphenic material from cane sugar, a common disaccharide. A suitable methodology was introduced to immobilize this material on sand without the need of any binder, resulting in a composite, referred to as graphene sand composite (GSC). Raman spectroscopy confirmed that the material is indeed graphenic in nature, having G and D bands at 1597 and 1338 cm(-1), respectively. It effectively removes contaminants from water. Here, we use rhodamine 6G (R6G) as a model dye and chloropyrifos (CP) as a model pesticide to demonstrate this application. The spectroscopic and microscopic analyses coupled with adsorption experiments revealed that physical adsorption plays a dominant role in the adsorption process. Isotherm data in batch experiments show an adsorption capacity of 55 mg/g for R6G and 48 mg/g for CP, which are superior to that of activated carbon. The adsorbent can be easily regenerated using a suitable eluent. This quick and cost-effective technique for the into a commercial water filter with appropriate engineering.
Applied Physics Letters | 2013
Purbarun Dhar; Soujit Sen Gupta; Saikat Chakraborty; Arvind Pattamatta; Sarit K. Das
A thermal transport mechanism leading to the enhanced thermal conductivity of graphene nanofluids has been proposed. The graphene sheet size is postulated to be the key to the underlying mechanism. Based on a critical sheet size derived from Stokes-Einstein equation for the poly-dispersed nanofluid, sheet percolation and Brownian motion assisted sheet collisions are used to explain the heat conduction. A collision dependant dynamic conductivity considering Debye approximated volumetric specific heat due to phonon transport in graphene has been incorporated. The model has been found to be in good agreement with experimental data.
Journal of Hazardous Materials | 2013
T. S. Sreeprasad; Soujit Sen Gupta; Shihabudheen M. Maliyekkal; T. Pradeep
An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm(-1) and 1345 cm(-1) in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.
Journal of Hazardous Materials | 2016
Dibyashree Koushik; Soujit Sen Gupta; Shihabudheen M. Maliyekkal; T. Pradeep
This paper reports dehalogenation of various organohalides, especially aliphatic halocarbons and pesticides at reduced graphene oxide-silver nanocomposite (RGO@Ag). Several pesticides as well as chlorinated and fluorinated alkyl halides were chosen for this purpose. The composite and the products of degradation were characterized thoroughly by means of various microscopic and spectroscopic techniques. A sequential two-step mechanism involving dehalogenation of the target pollutants by silver nanoparticles followed by adsorption of the degraded compounds onto RGO was revealed. The composite showed unusual adsorption capacity, as high as 1534 mg/g, which facilitated the complete removal of the pollutants. Irrespective of the pollutants tested, a pseudo-second-order rate equation best described the adsorption kinetics. The affinity of the composite manifested chemical differences. The high adsorption capacity and re-usability makes the composite an excellent substrate for purification of water.
ACS Applied Materials & Interfaces | 2015
Nalenthiran Pugazhenthiran; Soujit Sen Gupta; Anupama Prabhath; Muthu Manikandan; Jakka Ravindran Swathy; V. Kalyan Raman; T. Pradeep
We describe a simple and inexpensive cellulose-derived and layer-by-layer stacked carbon fiber network electrode for capacitive deionization (CDI) of brackish water. The microstructure and chemical composition were characterized using spectroscopic and microscopic techniques; electrochemical/electrical performance was evaluated by cyclic voltammetry and 4-probe electrical conductivity and surface area by Brunauer-Emmett-Teller analysis, respectively. The desalination performance was investigated using a laboratory batch model CDI unit, under fixed applied voltage and varying salt concentrations. Electro-adsorption of NaCl on the graphite reinforced-cellulose (GrC) electrode reached equilibrium quickly (within 90 min) and the adsorbed salts were released swiftly (in 40 min) back into the solution, during reversal of applied potential. X-ray photoelectron spectroscopic studies clearly illustrate that sodium and chloride ions were physisorbed on the negative and positive electrodes, respectively during electro-adsorption. This GrC electrode showed an electro-adsorption capacity of 13.1 mg/g of the electrode at a cell potential of 1.2 V, with excellent recyclability and complete regeneration. The electrode has a high tendency for removal of specific anions, such as fluoride, nitrate, chloride, and sulfate from water in the following order: Cl->NO3->F->SO4(2-). GrC electrodes also showed resistance to biofouling with negligible biofilm formation even after 5 days of incubation in Pseudomonas putida bacterial culture. Our unique cost-effective methodology of layer-by-layer stacking of carbon nanofibers and concurrent reinforcement using graphite provides uniform conductivity throughout the electrode with fast electro-adsorption, rapid desorption, and extended reuse, making the electrode affordable for capacitive desalination of brackish water.
RSC Advances | 2017
Manonmani Mohandoss; Soujit Sen Gupta; Anith Nelleri; T. Pradeep; Shihabudheen M. Maliyekkal
This paper explores the reduction of water dispersed graphene oxide (GO) by sunlight as an environmentally friendly alternative to conventional methods of reduction of GO. The possible mechanism of the reduction process is delineated. The electrical and thermal conductivity, the degree of reduction and structural defects of sunlight reduced GO (sRGO) are studied thoroughly and compared with RGO samples produced through hydrazine (hRGO) and hydrothermal (hyRGO) reduction routes. The study reveals that the production of sRGO is feasible and its electronic properties are on a par with those of hRGO. Interestingly, sRGO showed the least structural defects, good dispersibility and higher conductivity vis-a-vis its counterparts. This cost effective and environmentally friendly method of reducing GO to RGO with enhanced electronic properties may find applications in bio-sensing and electrochemical energy storage devices.
Advanced Materials | 2017
Avula Anil Kumar; Anirban Som; Paolo Longo; Chennu Sudhakar; Radha Gobinda Bhuin; Soujit Sen Gupta; Anshup; Mohan Udhaya Sankar; Amrita Chaudhary; Ramesh Kumar; T. Pradeep
Arsenic-free drinking water, independent of electrical power and piped water supply, is possible only through advanced and affordable materials with large uptake capacities. Confined metastable 2-line ferrihydrite, stable at ambient temperature, shows continuous arsenic uptake in the presence of other complex species in natural drinking water and an affordable water-purification device is made using the same.
Angewandte Chemie | 2016
Ananya Baksi; Mounika Gandi; Swathi Chaudhari; Soumabha Bag; Soujit Sen Gupta; T. Pradeep
Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) .
Journal of the American Society for Mass Spectrometry | 2014
Depanjan Sarkar; Soujit Sen Gupta; Rahul Narayanan; T. Pradeep
AbstractWe report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate. Figureᅟ