Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soumen Majhi is active.

Publication


Featured researches published by Soumen Majhi.


Scientific Reports | 2016

Chimera states in uncoupled neurons induced by a multilayer structure

Soumen Majhi; Matjaz Perc; Dibakar Ghosh

Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.


EPL | 2017

Chimera states: Effects of different coupling topologies

Bidesh K. Bera; Soumen Majhi; Dibakar Ghosh; Matjaz Perc

Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.


Chaos | 2017

Chimera states in a multilayer network of coupled and uncoupled neurons.

Soumen Majhi; Matjaz Perc; Dibakar Ghosh

We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.


Scientific Reports | 2017

Basin stability measure of different steady states in coupled oscillators

Sarbendu Rakshit; Bidesh K. Bera; Soumen Majhi; Chittaranjan Hens; Dibakar Ghosh

In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.


Physical Review E | 2017

Time-varying multiplex network: Intralayer and interlayer synchronization

Sarbendu Rakshit; Soumen Majhi; Bidesh K. Bera; Sudeshna Sinha; Dibakar Ghosh

A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.


Physics Letters A | 2016

Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

Soumen Majhi; Bidesh K. Bera; Sourav K. Bhowmick; Dibakar Ghosh

Abstract The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators.


European Physical Journal-special Topics | 2016

Synchronization of chaotic modulated time delay networks in presence of noise

Soumen Majhi; Bidesh K. Bera; Santo Banerjee; Dibakar Ghosh

We study the constructive role of noises in a Lorenz system with functional delay. The effect of delay can change the dynamics of the system to a chaotic one from its steady state. Induced synchronization with white and colored (red and green) noises are observed between two identical uncoupled systems and enhancement of synchrony is also observed with unidirectional coupling. We investigate both the phenomena in a globally coupled network in the presence of white and color noises.


Physical Review E | 2017

Survivability of a metapopulation under local extinctions

Srilena Kundu; Soumen Majhi; Sourav Kumar Sasmal; Dibakar Ghosh; Biswambhar Rakshit

A metapopulation structure in landscape ecology comprises a group of interacting spatially separated subpopulations or patches of the same species that may experience several local extinctions. This makes the investigation of survivability (in the form of global oscillation) of a metapopulation on top of diverse dispersal topologies extremely crucial. However, among various dispersal topologies in ecological networks, which one can provide higher metapopulation survivability under local extinction is still not well explored. In this article, we scrutinize the robustness of an ecological network consisting of prey-predator patches having Holling type I functional response, against progressively extinct population patches. We present a comprehensive study on this while considering global, small-world, and scale-free dispersal of the subpopulations. Furthermore, we extend our work in enhancing survivability in the form of sustained global oscillation by introducing asymmetries in the dispersal rates of the considered species. Our findings affirm that the asynchrony among the patches plays an important role in the survivability of a metapopulation. In order to demonstrate the model independence of the observed phenomenon, we perform a similar analysis for patches exhibiting Holling type II functional response. On the grounds of the obtained results, our work is expected to provide a better perception of the influence of dispersal arrangements on the global survivability of ecological networks.


Chaos | 2018

Alternating chimeras in networks of ephaptically coupled bursting neurons

Soumen Majhi; Dibakar Ghosh

The distinctive phenomenon of the chimera state has been explored in neuronal systems under a variety of different network topologies during the last decade. Nevertheless, in all the works, the neurons are presumed to interact with each other directly with the help of synapses only. But, the influence of ephaptic coupling, particularly magnetic flux across the membrane, is mostly unexplored and should essentially be dealt with during the emergence of collective electrical activities and propagation of signals among the neurons in a network. Through this article, we report the development of an emerging dynamical state, namely, the alternating chimera, in a network of identical neuronal systems induced by an external electromagnetic field. Owing to this interaction scenario, the nonlinear neuronal oscillators are coupled indirectly via electromagnetic induction with magnetic flux, through which neurons communicate in spite of the absence of physical connections among them. The evolution of each neuron, here, is described by the three-dimensional Hindmarsh-Rose dynamics. We demonstrate that the presence of such non-locally and globally interacting external environments induces a stationary alternating chimera pattern in the ensemble of neurons, whereas in the local coupling limit, the network exhibits a transient chimera state whenever the local dynamics of the neurons is of the chaotic square-wave bursting type. For periodic square-wave bursting of the neurons, a similar qualitative phenomenon has been witnessed with the exception of the disappearance of cluster states for non-local and global interactions. Besides these observations, we advance our work while providing confirmation of the findings for neuronal ensembles exhibiting plateau bursting dynamics and also put forward the fact that the plateau pattern actually favors the alternating chimera more than others. These results may deliver better interpretations for different aspects of synchronization appearing in a network of neurons through field coupling that also relaxes the prerequisite of synaptic connectivity for realizing the chimera state in neuronal networks.


European Physical Journal B | 2017

Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

Bidesh K. Bera; Soumen Majhi; Dibakar Ghosh

Abstract This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

Collaboration


Dive into the Soumen Majhi's collaboration.

Top Co-Authors

Avatar

Dibakar Ghosh

Indian Statistical Institute

View shared research outputs
Top Co-Authors

Avatar

Bidesh K. Bera

Indian Statistical Institute

View shared research outputs
Top Co-Authors

Avatar

Srilena Kundu

Indian Statistical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarbendu Rakshit

Indian Statistical Institute

View shared research outputs
Top Co-Authors

Avatar

Chittaranjan Hens

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sourav Kumar Sasmal

Indian Statistical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge