Soumit S Mandal
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soumit S Mandal.
Energy and Environmental Science | 2011
Shyamal K. Das; Soumit S Mandal; Aninda J. Bhattacharyya
Influence of dispersion of uniformly sized mono-functional and bi-functional (“Janus”) particles on ionic conductivity of novel “soggy sand” electrolytes and its implications on mechanical strength and lithium-ion battery performance are discussed here.
Journal of Chemical Sciences | 2012
Soumit S Mandal; Aninda J. Bhattacharyya
AbstractAnatase Ag–TiO2 microwires with high sensitivity and photocatalytic activity were synthesized via polyol synthesis route followed by a simple surface modification and chemical reduction approach for attachment of silver. The superior performance of the Ag–TiO2 composite microwires is attributed to improved surface reactivity, mass transport and catalytic property as a result of wiring the TiO2 surface with Ag nanoparticles. Compared to the TiO2 microwires, Ag–TiO2 microwires exhibited three times higher sensitivity in the detection of cationic dye such as methylene blue. Photocatalytic degradation efficiency was also found to be significantly enhanced at constant illumination protocols and observation times. The improved performance is attributed to the formation of a Schottky barrier between TiO2 and Ag nanoparticles leading to a fast transport of photogenerated electrons to the Ag nanoparticles. Graphical AbstractThe Ag–TiO2 composite micro-wires synthesized via polyol route followed by chemical functionalization approach showed improved current response and hence sensitivity for the detection of dyes. They also showed higher efficiency for photocatalytic degradation of dyes. Their performance remains unaffected for several cycles.
Journal of Materials Chemistry B | 2013
Soumit S Mandal; K. Karthik Narayan; Aninda J. Bhattacharyya
An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 μA mg-1 ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).
Journal of Physical Chemistry B | 2009
Shobhna Kapoor; Soumit S Mandal; Aninda J. Bhattacharyya
Investigations on the structure and function of hemoglobin (Hb) confined inside sol-gel template synthesized silica nanotubes (SNTs) have been discussed here. Immobilization of hemoglobin inside SNTs resulted in the enhancement of direct electron transfer during an electrochemical reaction. Extent of influence of nanoconfinement on protein activity is further probed via ligand binding and thermal stability studies. Electrochemical investigations show reversible binding of n-donor liquid ligands, such as pyridine and its derivatives, and predictive variation in their redox potentials suggests an absence of any adverse effect on the structure and function of Hb confined inside nanometer-sized channels of SNTs. Immobilization also resulted in enhanced thermal stability of Hb. The melting or denaturation temperature of Hb immobilized inside SNTs increase by approximately 4 degrees C as compared with that of free Hb in solution.
Talanta | 2010
Soumit S Mandal; Aninda J. Bhattacharyya
Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here. Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO(2) nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO(2) nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH. Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology.
Bioelectrochemistry | 2014
Soumit S Mandal; Vikas Navratna; Pratyush Sharma; B. Gopal; Aninda J. Bhattacharyya
The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (Cprotein ca 1ng/μl). Reproducible measurements on protein samples at this concentration (Ip,a of 80+1.2μA) could be achieved using a sample volume of ca 30μl. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments.
Journal of Physical Chemistry B | 2012
Soumit S Mandal; Satarupa Bhaduri; Heinz Amenitsch; Aninda J. Bhattacharyya
The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R(g)) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R(g) value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 °C, Tm 59 °C), the R(g) values for the confined Hb remained constant. This observation is in contrary to the increasing R(g) values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe(3+) → Fe(2+)), efficient reversible Fe(3+)/Fe(2+) redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.
ChemPhysChem | 2014
Soumit S Mandal; Viviana Cristiglio; Peter Lindner; Aninda J. Bhattacharyya
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (≈20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (Rg) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the Rg of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (Rg of native Hb=23.8 Å). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.
Journal of Physical Chemistry B | 2010
Shobhna Kapoor; Tavarekere S. Girish; Soumit S Mandal; B. Gopal; Aninda J. Bhattacharyya
The feasibility of utilizing mesoporous matrices of alumina and silica for the inhibition of enzymatic activity is presented here. These studies were performed on a protein tyrosine phosphatase by the name chick retinal tyrosine phosphotase-2 (CRYP-2), a protein that is identical in sequence to the human glomerular epithelial protein-1 and involved in hepatic carcinoma. The inhibition of CRYP-2 is of tremendous therapeutic importance. Inhibition of catalytic activity was examined using the sustained delivery of p-nitrocatechol sulfate (pNCS) from bare and amine functionalized mesoporous silica (MCM-48) and mesoporous alumina (Al(2)O(3)). Among the various mesoporous matrices employed, amine functionalized MCM-48 exhibited the best release of pNCS and also inhibition of CRYP-2. The maximum speed of reaction v(max) (=160 +/- 10 micromol/mnt/mg) and inhibition constant K(i) (=85.0 +/- 5.0 micromol) estimated using a competitive inhibition model were found to be very similar to inhibition activities of protein tyrosine phosphatases using other methods.
Materials Chemistry and Physics | 2014
Soumit S Mandal; Deena Jose; Aninda J. Bhattacharyya