Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soumya Ghose is active.

Publication


Featured researches published by Soumya Ghose.


Medical Image Analysis | 2014

Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge

Geert J. S. Litjens; Robert Toth; Wendy J. M. van de Ven; C.M.A. Hoeks; Sjoerd Kerkstra; Bram van Ginneken; Graham Vincent; Gwenael Guillard; Neil Birbeck; Jindang Zhang; Robin Strand; Filip Malmberg; Yangming Ou; Christos Davatzikos; Matthias Kirschner; Florian Jung; Jing Yuan; Wu Qiu; Qinquan Gao; Philip J. Edwards; Bianca Maan; Ferdinand van der Heijden; Soumya Ghose; Jhimli Mitra; Jason Dowling; Dean C. Barratt; Henkjan J. Huisman; Anant Madabhushi

Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p<0.05) and had an efficient implementation with a run time of 8min and 3s per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/.


NeuroImage | 2014

Lesion segmentation from multimodal MRI using random forest following ischemic stroke.

Jhimli Mitra; Pierrick Bourgeat; Jurgen Fripp; Soumya Ghose; Stephen E. Rose; Olivier Salvado; Alan Connelly; Bruce C.V. Campbell; Susan Palmer; Gagan Sharma; Soren Christensen; Leeanne M. Carey

Understanding structure-function relationships in the brain after stroke is reliant not only on the accurate anatomical delineation of the focal ischemic lesion, but also on previous infarcts, remote changes and the presence of white matter hyperintensities. The robust definition of primary stroke boundaries and secondary brain lesions will have significant impact on investigation of brain-behavior relationships and lesion volume correlations with clinical measures after stroke. Here we present an automated approach to identify chronic ischemic infarcts in addition to other white matter pathologies, that may be used to aid the development of post-stroke management strategies. Our approach uses Bayesian-Markov Random Field (MRF) classification to segment probable lesion volumes present on fluid attenuated inversion recovery (FLAIR) MRI. Thereafter, a random forest classification of the information from multimodal (T1-weighted, T2-weighted, FLAIR, and apparent diffusion coefficient (ADC)) MRI images and other context-aware features (within the probable lesion areas) was used to extract areas with high likelihood of being classified as lesions. The final segmentation of the lesion was obtained by thresholding the random forest probabilistic maps. The accuracy of the automated lesion delineation method was assessed in a total of 36 patients (24 male, 12 female, mean age: 64.57±14.23yrs) at 3months after stroke onset and compared with manually segmented lesion volumes by an expert. Accuracy assessment of the automated lesion identification method was performed using the commonly used evaluation metrics. The mean sensitivity of segmentation was measured to be 0.53±0.13 with a mean positive predictive value of 0.75±0.18. The mean lesion volume difference was observed to be 32.32%±21.643% with a high Pearsons correlation of r=0.76 (p<0.0001). The lesion overlap accuracy was measured in terms of Dice similarity coefficient with a mean of 0.60±0.12, while the contour accuracy was observed with a mean surface distance of 3.06mm±3.17mm. The results signify that our method was successful in identifying most of the lesion areas in FLAIR with a low false positive rate.


International Journal of Radiation Oncology Biology Physics | 2015

Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

Jason Dowling; Jidi Sun; Peter Pichler; David Rivest-Hénault; Soumya Ghose; Haylea Richardson; Chris Wratten; Jarad Martin; Jameen Arm; Leah Best; Shekhar S. Chandra; Jurgen Fripp; F. W. Menk; Peter B. Greer

PURPOSE To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. PATIENTS AND METHODS A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. RESULTS The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). CONCLUSIONS The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.


Medical Image Analysis | 2013

A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images

Soumya Ghose; Arnau Oliver; Jhimli Mitra; Robert Martí; Xavier Lladó; Jordi Freixenet; Désiré Sidibé; Joan C. Vilanova; Josep Comet; Fabrice Meriaudeau

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi-resolution framework. The model parameters are then modified with the prior knowledge of the optimization space to achieve optimal prostate segmentation. In contrast to traditional statistical models of shape and intensity priors, we use posterior probabilities of the prostate region determined from random forest classification to build our appearance model, initialize and propagate our model. Furthermore, multiple mean models derived from spectral clustering of combined shape and appearance parameters are applied in parallel to improve segmentation accuracies. The proposed method achieves mean Dice similarity coefficient value of 0.91 ± 0.09 for 126 images containing 40 images from the apex, 40 images from the base and 46 images from central regions in a leave-one-patient-out validation framework. The mean segmentation time of the procedure is 0.67 ± 0.02 s.


Artificial Intelligence in Medicine | 2015

A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning

Soumya Ghose; Lois C Holloway; Karen Lim; Philip Chan; Jacqueline Veera; Shalini K Vinod; Gary P Liney; Peter B. Greer; Jsaon Dowling

OBJECTIVE Manual contouring and registration for radiotherapy treatment planning and online adaptation for cervical cancer radiation therapy in computed tomography (CT) and magnetic resonance images (MRI) are often necessary. However manual intervention is time consuming and may suffer from inter or intra-rater variability. In recent years a number of computer-guided automatic or semi-automatic segmentation and registration methods have been proposed. Segmentation and registration in CT and MRI for this purpose is a challenging task due to soft tissue deformation, inter-patient shape and appearance variation and anatomical changes over the course of treatment. The objective of this work is to provide a state-of-the-art review of computer-aided methods developed for adaptive treatment planning and radiation therapy planning for cervical cancer radiation therapy. METHODS Segmentation and registration methods published with the goal of cervical cancer treatment planning and adaptation have been identified from the literature (PubMed and Google Scholar). A comprehensive description of each method is provided. Similarities and differences of these methods are highlighted and the strengths and weaknesses of these methods are discussed. A discussion about choice of an appropriate method for a given modality is provided. RESULTS In the reviewed papers a Dice similarity coefficient of around 0.85 along with mean absolute surface distance of 2-4mm for the clinically treated volume were reported for transfer of contours from planning day to the treatment day. CONCLUSIONS Most segmentation and non-rigid registration methods have been primarily designed for adaptive re-planning for the transfer of contours from planning day to the treatment day. The use of shape priors significantly improved segmentation and registration accuracy compared to other models.


NeuroImage | 2016

Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks

Jhimli Mitra; Kaikai Shen; Soumya Ghose; Pierrick Bourgeat; Jurgen Fripp; Olivier Salvado; Kerstin Pannek; D. Jamie Taylor; Jane L. Mathias; Stephen E. Rose

Identifying diffuse axonal injury (DAI) in patients with traumatic brain injury (TBI) presenting with normal appearing radiological MRI presents a significant challenge. Neuroimaging methods such as diffusion MRI and probabilistic tractography, which probe the connectivity of neural networks, show significant promise. We present a machine learning approach to classify TBI participants primarily with mild traumatic brain injury (mTBI) based on altered structural connectivity patterns derived through the network based statistical analysis of structural connectomes generated from TBI and age-matched control groups. In this approach, higher order diffusion models were used to map white matter connections between 116 cortical and subcortical regions. Tracts between these regions were generated using probabilistic tracking and mean fractional anisotropy (FA) measures along these connections were encoded in the connectivity matrices. Network-based statistical analysis of the connectivity matrices was performed to identify the network differences between a representative subset of the two groups. The affected network connections provided the feature vectors for principal component analysis and subsequent classification by random forest. The validity of the approach was tested using data acquired from a total of 179 TBI patients and 146 controls participants. The analysis revealed altered connectivity within a number of intra- and inter-hemispheric white matter pathways associated with DAI, in consensus with existing literature. A mean classification accuracy of 68.16%±1.81% and mean sensitivity of 80.0%±2.36% were achieved in correctly classifying the TBI patients evaluated on the subset of the participants that was not used for the statistical analysis, in a 10-fold cross-validation framework. These results highlight the potential for statistical machine learning approaches applied to structural connectomes to identify patients with diffusive axonal injury.


Lung Cancer | 2018

Radiomics and radiogenomics in lung cancer: A review for the clinician

Rajat Thawani; Michael McLane; Niha Beig; Soumya Ghose; Prateek Prasanna; Vamsidhar Velcheti; Anant Madabhushi

Lung cancer is responsible for a large proportion of cancer-related deaths across the globe, with delayed detection being perhaps the most significant factor for its high mortality rate. Though the National Lung Screening Trial argues for screening of certain at-risk populations, the practical implementation of these screening efforts has not yet been successful and remains in high demand. Radiomics refers to the computerized extraction of data from radiologic images, and provides unique potential for making lung cancer screening more rapid and accurate using machine learning algorithms. The quantitative features analyzed express subvisual characteristics of images which correlate with pathogenesis of diseases. These features are broadly classified into four categories: intensity, structure, texture/gradient, and wavelet, based on the types of image attributes they capture. Many studies have been done to show correlation between these features and the malignant potential of a nodule on a chest CT. In cancer patients, these nodules also have features that can be correlated with prognosis and mutation status. The major limitations of radiomics are the lack of standardization of acquisition parameters, inconsistent radiomic methods, and lack of reproducibility. Researchers are working on overcoming these limitations, which would make radiomics more acceptable in the medical community.


XVII International Conference on the Use of Computers in Radiation Therapy | 2014

Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

Jason Dowling; N Burdett; Peter B. Greer; Jidi Sun; Joel Parker; Peter Pichler; Peter Stanwell; Shekhar S. Chandra; David Rivest-Hénault; Soumya Ghose; Olivier Salvado; Jurgen Fripp

Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.


Scientific Reports | 2017

Computational imaging reveals shape differences between normal and malignant prostates on MRI

Mirabela Rusu; Andrei S. Purysko; Sadhna Verma; Jonathan E. Kiechle; Jay Gollamudi; Soumya Ghose; Karin Herrmann; Vikas Gulani; Raj Mohan Paspulati; Lee E. Ponsky; Maret Böhm; Anne Maree Haynes; Daniel Moses; Ron Shnier; Warick Delprado; James Thompson; Anant Madabhushi

We seek to characterize differences in the shape of the prostate and the central gland (combined central and transitional zones) between men with biopsy confirmed prostate cancer and men who were identified as not having prostate cancer either on account of a negative biopsy or had pelvic imaging done for a non-prostate malignancy. T2w MRI from 70 men were acquired at three institutions. The cancer positive group (PCa+) comprised 35 biopsy positive (Bx+) subjects from three institutions (Gleason scores: 6–9, Stage: T1–T3). The negative group (PCa−) combined 24 biopsy negative (Bx−) from two institutions and 11 subjects diagnosed with rectal cancer but with no clinical or MRI indications of prostate cancer (Cl−). The boundaries of the prostate and central gland were delineated on T2w MRI by two expert raters and were used to construct statistical shape atlases for the PCa+, Bx− and Cl− prostates. An atlas comparison was performed via per-voxel statistical tests to localize shape differences (significance assessed at p < 0.05). The atlas comparison revealed central gland hypertrophy in the Bx− subpopulation, resulting in significant volume and posterior side shape differences relative to PCa+ group. Significant differences in the corresponding prostate shapes were noted at the apex when comparing the Cl− and PCa+ prostates.


Physics in Medicine and Biology | 2017

Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study

Soumya Ghose; Jason Dowling; Robba Rai; Gary P Liney

In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.

Collaboration


Dive into the Soumya Ghose's collaboration.

Top Co-Authors

Avatar

Jhimli Mitra

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jason Dowling

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anant Madabhushi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jurgen Fripp

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rakesh Shiradkar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Rivest-Hénault

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Olivier Salvado

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Rose

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge