Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soumya Sundar Bhattacharyya is active.

Publication


Featured researches published by Soumya Sundar Bhattacharyya.


Colloids and Surfaces B: Biointerfaces | 2013

Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells

Sreemanti Das; Jayeeta Das; Asmita Samadder; Soumya Sundar Bhattacharyya; Durba Das; Anisur Rahman Khuda-Bukhsh

The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer.


European Journal of Pharmacology | 2009

A synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice

Soumya Sundar Bhattacharyya; Saili Paul; Sushil Kumar Mandal; Antara Banerjee; Naoual Boujedaini; Anisur Rahman Khuda-Bukhsh

Scopoletin, an alkaloid separated from ethanolic extract of the medicinal plant, Gelsemium sempervirens (Fam: Loganiaceae) has been reported to have anti-cancer potentials. The synthetic coumarin (4-Methyl-7 hydroxy coumarin) derived from resorcinol and ethyl aceto-acetate in presence of concentrated sulphuric acid is structurally close to scopoletin, being a coumarin derivative. Whether this synthetic compound also has anti-cancer potentials has been evaluated in vivo on DMBA (7,12-Dimethylbenz[a]anthracene) induced skin cancer in mice by analyzing results of several cytogenetic endpoints, Comet assay, and fluorescence activated cell sorting (FACS). Further, expressions of signal proteins like Aryl hydrocarbon receptor , p53, PCNA, Akt, Bcl-2, Bcl-xL, Bad, Bax, NF-kappaB Apaf, IL-6, Cytochrome-c, Caspase-3 and Caspase-9 were studied by immunoblot analysis along with histology of skin and immuno-histochemical localization of Aryl hydrocarbon receptor and PCNA in DMBA treated mice vis-a-vis carcinogen treated synthetic coumarin fed mice. Feeding of this synthetic coumarin induced positive modulations in expression of all biomarkers in DMBA administered mice, giving clues on its possible signaling pathway(s) - primarily through down-regulation of Aryl hydrocarbon receptor and PCNA and up-regulation of apoptotic proteins like Bax, Bad, Cytochrome c, Apaf, Caspase-3 and Caspase-9, resulting in an appreciable reduction in growth of papilloma in mice. Therefore, this synthetic coumarin shows promise for use in cancer therapy, particularly in skin cancer.


Evidence-based Complementary and Alternative Medicine | 2011

Thujone-Rich Fraction of Thuja occidentalis Demonstrates Major Anti-Cancer Potentials: Evidences from In Vitro Studies on A375 Cells

Raktim Biswas; Sushil Kumar Mandal; Suman Dutta; Soumya Sundar Bhattacharyya; Naoual Boujedaini; Anisur Rahman Khuda-Bukhsh

Crude ethanolic extract of Thuja occidentalis (Fam: Cupressaceae) is used as homeopathic mother tincture (TOΦ) to treat various ailments, particularly moles and tumors, and also used in various other systems of traditional medicine. Anti-proliferative and apoptosis-inducing properties of TOΦ and the thujone-rich fraction (TRF) separated from it have been evaluated for their possible anti-cancer potentials in the malignant melanoma cell line A375. On initial trial by S-diphenyltetrazolium bromide assay, both TOΦ and TRF showed maximum cytotoxic effect on A375 cell line while the other three principal fractions separated by chromatography had negligible or no such effect, because of which only TRF was further characterized and subjected to certain other assays for determining its precise anti-proliferative and apoptotic potentials. TRF was reported to have a molecular formula of C10H16O with a molecular weight of 152. Exposure of TRF of Thuja occidentalis to A375 cells in vitro showed more cytotoxic, anti-proliferative and apoptotic effects as compared with TOΦ, but had minimal growth inhibitory responses when exposed to normal cells (peripheral blood mononuclear cell). Furthermore, both TOΦ and TRF also caused a significant decrease in cell viability, induced inter-nucleosomal DNA fragmentation, mitochondrial transmembrane potential collapse, increase in ROS generation, and release of cytochrome c and caspase-3 activation, all of which are closely related to the induction of apoptosis in A375 cells. Thus, TRF showed and matched all the anti-cancer responses of TOΦ and could be the main bio-active fraction. The use of TOΦ in traditional medicines against tumors has, therefore, a scientific basis.


Experimental Biology and Medicine | 2008

In Vitro Studies Demonstrate Anticancer Activity of an Alkaloid of the Plant Gelsemium sempervirens

Soumya Sundar Bhattacharyya; Sushil Kumar Mandal; Raktim Biswas; Saili Paul; Surajit Pathak; Naoual Boujedaini; Philippe Belon; Anisur Rahman Khuda-Bukhsh

The chemical structure of the main fluorescenting compound in the ethanolic extract (mother tincture) of the American yellow jasmine, Gelsemium sempervirens, was determined by employing 1H nuclear magnetic resonance (NMR), 13C NMR, mass spectroscopy, high-performance liquid chromatography (HPLC), correlation spectroscopy (COSY), and Fourier transform infrared (FTIR) spectroscopy analyses. Spectrofluorometric analysis has been made of the mother tincture and its agitated serial dilutions (up to 12th potency) prepared according to a homeopathic procedure in which serial, agitated dilutions were made separately in glass and polypropylene containers. The succussions were made by employing three different modes: hand jerk, sonication, and vortexing. The chemical formula of scopoletin, the main fluorescent compound, was determined to be C10H8O4 having a molecular weight of 192.17. Significant differences were noted between the remedies prepared in the two types of containers. Further, a comparison between any two methods of agitation revealed significant differences in fluorometric data of remedies at certain potency levels. The biological (anticancer) action of the crude extract, the alkaloid scopoletin, and 2C potency of Gelsemium sp were tested in vitro on the HeLa cell line through fluorescence microscopy, the 3(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and fluorescent activated cell sorting (FACS). The role of nanoparticles presumably derived from the containers, their orientation, and their interaction with the starting substance during the dynamization process initiated by different modes of agitation could possibly be attributed to the differences noted in the fluorometric data of potencies prepared in the two types of containers and among the three different means of succussion tested.


Toxicology and Applied Pharmacology | 2011

Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target.

Soumya Sundar Bhattacharyya; Saili Paul; Arnab Kumar De; Durba Das; Asmita Samadder; Naoual Boujedaini; Anisur Rahman Khuda-Bukhsh

Several naturally occurring coumarin compounds, including scopoletin (7 hydroxy-6 methoxycoumarin), of plant origin have been reported to have anti-cancer potentials. A related but chemically synthesized coumarin, 4-methyl-7-hydroxy coumarin (SC), was also shown to have similar anti-cancer potentials. In the present study, to test if nano-encapsulated SC could be a more potent anti-cancer agent, we encapsulated SC with poly lactide-co-glycolide acid (PLGA) nanoparticles (Nano Coumarin; NC) and tested its potentials with a variety of protocols. NC demonstrated greater efficiency of drug uptake and showed anti-cancer potentials in melanoma cell line A375, as revealed from scanning electronic and atomic force microscopies. To test its possible interaction with target DNA, the combined data of circular dichroism spectra (CD) and melting temperature profile (T(m)) of calf thymus DNA treated with NC were analyzed. Results indicated a concentration dependent interaction of NC with calf thymus DNA, bringing in effective change in structure and conformation, and forming a new complex that increased its stability. Particle size and morphology of NC determined through polydispersity index and zeta potential using dynamic light scattering qualified NC to be a more potent anti-cancer agent than SC. Further, SC and NC showed negligible cytotoxic effects on normal skin cells and peripheral blood mononuclear cells of mice. Distribution assay of PLGA nanoparticles in different tissues like brain, heart, kidneys, liver, lungs, and spleen in mice revealed the presence of nanoparticles in different tissues including brain, indicating that the particles could cross the blood brain barrier, significant information for drug design.


Experimental Biology and Medicine | 2010

Encapsulated plant extract (Gelsemium sempervirens) poly (lactide-co-glycolide) nanoparticles enhance cellular uptake and increase bioactivity in vitro.

Soumya Sundar Bhattacharyya; Saili Paul; Anisur Rahman Khuda-Bukhsh

Ethanolic extract of Gelsemium sempervirens (family: Loganiaceae), henceforth to be called EEGS, is used in various traditional systems of medicine. In homeopathy, EEGS is known as mother tincture of G. sempervirens, which is generally used to treat pain and respiratory ailments. We demonstrated earlier anticancer activity of crude EEGS by in vitro studies on human HeLa cells. To test the hypothesis if nanoparticle-encapsulated extract (now onwards to be called NEEGS) could enhance cellular uptake and thereby improve bioactivity, we formulated nanoparticle encapsulation based on poly (lactide-co-glycolide) (PLGA) and confirmed encapsulation by scanning electron microscopy (SEM) and atomic force microscopy. EEGS was encapsulated with 81.6% efficiency in PLGA biodegradable nanoparticle formulation and F68 (polyoxyethylene-polyoxypropylene) was used as a stabilizer. Dynamic laser light scattering and SEM indicated a particle diameter of 122.6 nm. The zeta potential of the drug-loaded nanoparticles was −14.8 mV. NEEGS was characterized for their biological activities in a skin cancer cell line A375 in vitro. NEEGS exhibited relatively rapid (30 min) and more efficient cellular uptake than their un-encapsulated counterpart (45 min). Analysis of data of apoptosis study using Annexin V-FITC, terminal transferase dUTP nick end labeling assay and DNA ladder revealed that encapsulated EEGS was more potent than their un-encapsulated counterpart in inducing apoptosis of A375 cells. Reverse transcriptase-polymerase chain reaction data of survivin, cyclin-D1, caspase-3, PCNA and p53 also corroborated well to suggest greater potentials of NEEGS as anticancer agents.


European Journal of Pharmacology | 2010

Lycopodine from Lycopodium clavatum extract inhibits proliferation of HeLa cells through induction of apoptosis via caspase-3 activation.

Sushil Kumar Mandal; Raktim Biswas; Soumya Sundar Bhattacharyya; Saili Paul; Suman Dutta; Surajit Pathak; Anisur Rahman Khuda-Bukhsh

Crude ethanolic extract of the plant Lycopodium clavatum has long been used in complementary and alternative medicine for treating various liver ailments and Alzheimers disease. It has also been claimed to have potential anti-cancer properties in vivo in mice chronically fed liver carcinogens, p-dimethylamino azobenzene (initiator) and phenobarbital (promoter). Incidentally, crude ethanolic extract of Lycopodium clavatum is a mixture of some 201 alkaloids. In order to ascertain if any major fraction can be attributed to have pronounced anti-cancer effect, we examined this major fraction by eluting the crude extract in petroleum ether:ethyl aetate (17:3 vol/vol;) solvent and tried to understand its underlying mechanism. Studies on morphological changes, cell viability and cytotoxicity by microscopy and FACS, Western blot and immunofluorescence of Bcl-2, Bax, cytochrome c, caspase-3 were conducted. Lycopodine was found to induce chromatin condensation, inter-nucleosomal DNA fragmentation and enhanced cell population in sub-G1 region along with increase in reactive oxygen species generation and mitochondrial membrane potential depolarization, release of cytochrome c and activation of caspase-3 which are the events closely involved in apoptosis. An overall analysis of results showed that Lycopodine considerably inhibited growth of HeLa cells which indicates its potential use in chemotherapy.


Evidence-based Complementary and Alternative Medicine | 2011

Modulation of Signal Proteins: A Plausible Mechanism to Explain How a Potentized Drug Secale Cor 30C Diluted beyond Avogadro's Limit Combats Skin Papilloma in Mice

Anisur Rahman Khuda-Bukhsh; Soumya Sundar Bhattacharyya; Saili Paul; Suman Dutta; Naoual Boujedaini; Philippe Belon

In homeopathy, ability of ultra-high diluted drugs at or above potency 12C (diluted beyond Avogadros limit) in ameliorating/curing various diseases is often questioned, particularly because the mechanism of action is not precisely known. We tested the hypothesis if suitable modulations of signal proteins could be one of the possible pathways of action of a highly diluted homeopathic drug, Secale cornutum 30C (diluted 1060 times; Sec cor 30). It could successfully combat DMBA + croton oil-induced skin papilloma in mice as evidenced by histological, cytogenetical, immunofluorescence, ELISA and immunoblot findings. Critical analysis of several signal proteins like AhR, PCNA, Akt, Bcl-2, Bcl-xL, NF-κB and IL-6 and of pro-apoptotic proteins like cytochrome c, Bax, Bad, Apaf, caspase-3 and -9 revealed that Sec cor 30 suitably modulated their expression levels along with amelioration of skin papilloma. FACS data also suggested an increase of cell population at S and G2 phases and decrease in sub-G1 and G1 phages in carcinogen-treated drug-unfed mice, but these were found to be near normal in the Sec cor 30-fed mice. There was reduction in genotoxic and DNA damages in bone marrow cells of Sec Cor 30-fed mice, as revealed from cytogenetic and Comet assays. Changes in histological features of skin papilloma were noted. Immunofluorescence studies of AhR and PCNA also suggested reduced expression of these proteins in Sec cor 30-fed mice, thereby showing its anti-cancer potentials against skin papilloma. Furthermore, this study also supports the hypothesis that potentized homeopathic drugs act at gene regulatory level.


Ecotoxicology and Environmental Safety | 2009

Ascorbic acid combats arsenic-induced oxidative stress in mice liver

Pathikrit Banerjee; Soumya Sundar Bhattacharyya; Nandini Bhattacharjee; Surajit Pathak; Naoual Boujedaini; Philippe Belon; Anisur Rahman Khuda-Bukhsh

Repeated injections of arsenic trioxide induced oxidative stress and hepatotoxicity in mice as revealed from elevated levels of glutamate oxaloacetate transaminases, glutamate pyruvate transaminases, acid and alkaline phosphatases, lipid peroxidation along with reduction of superoxide dismutase, catalase, reduced glutathione content, glutathione reductase and succinate dehydrogenase activities. The present investigation was undertaken to test whether simultaneous feeding of vitamin C can combat hepatotoxicity in arsenic intoxicated mice. Hepatoprotective potential of vitamin C was indicated by its ability to restore GSH, SOD, CAT, AcP, AlkP and GRD levels towards near normal. Electron microscopic studies further supported the biochemical findings confirming the hepatoprotective potential of ascorbic acid. Besides, cytogenetical endpoints (chromosome aberrations, micronuclei, mitotic index and sperm head anomaly) were also analyzed. Administration of vitamin C alone did not show any sign of toxicity of its own. Based on the present findings, ascorbic acid appears to have protective effects against arsenic toxicity and oxidative stress.


Toxicology and Applied Pharmacology | 2013

Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings

Asmita Samadder; Jayeeta Das; Sreemanti Das; Arnab Kumar De; Santu Kumar Saha; Soumya Sundar Bhattacharyya; Anisur Rahman Khuda-Bukhsh

Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood-brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenic were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPARγ, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form.

Collaboration


Dive into the Soumya Sundar Bhattacharyya's collaboration.

Top Co-Authors

Avatar

Anisur Rahman Khuda-Bukhsh

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Naoual Boujedaini

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Saili Paul

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Asmita Samadder

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Philippe Belon

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Suman Dutta

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Surajit Pathak

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Sushil Kumar Mandal

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Arnab Kumar De

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Jayeeta Das

Kalyani Government Engineering College

View shared research outputs
Researchain Logo
Decentralizing Knowledge