Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soumyadipta Acharya is active.

Publication


Featured researches published by Soumyadipta Acharya.


IEEE Transactions on Biomedical Engineering | 2009

Decoding of Individuated Finger Movements Using Surface Electromyography

Francesco Tenore; Ander Ramos; Amir Fahmy; Soumyadipta Acharya; Ralph Etienne-Cummings; Nitish V. Thakor

Upper limb prostheses are increasingly resembling the limbs they seek to replace in both form and functionality, including the design and development of multifingered hands and wrists. Hence, it becomes necessary to control large numbers of degrees of freedom (DOFs), required for individuated finger movements, preferably using noninvasive signals. While existing control paradigms are typically used to drive a single-DOF hook-based configurations, dexterous tasks such as individual finger movements would require more elaborate control schemes. We show that it is possible to decode individual flexion and extension movements of each finger (ten movements) with greater than 90% accuracy in a transradial amputee using only noninvasive surface myoelectric signals. Further, comparison of decoding accuracy from a transradial amputee and able-bodied subjects shows no statistically significant difference ( p < 0.05) between these subjects. These results are encouraging for the development of real-time control strategies based on the surface myoelectric signal to control dexterous prosthetic hands.


Journal of Neuroengineering and Rehabilitation | 2007

A brain-computer interface with vibrotactile biofeedback for haptic information

Aniruddha Chatterjee; Vikram Aggarwal; Ander Ramos; Soumyadipta Acharya; Nitish V. Thakor

BackgroundIt has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only vibrotactile feedback, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy.MethodsA Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance.Results and ConclusionSubjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.


international conference of the ieee engineering in medicine and biology society | 2007

Towards the Control of Individual Fingers of a Prosthetic Hand Using Surface EMG Signals

Francesco Tenore; Ander Ramos; Amir Fahmy; Soumyadipta Acharya; Ralph Etienne-Cummings; Nitish V. Thakor

The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.


Journal of Neural Engineering | 2010

Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand

Soumyadipta Acharya; Matthew S. Fifer; Heather L. Benz; Nathan E. Crone; Nitish V. Thakor

Four human subjects undergoing subdural electrocorticography for epilepsy surgery engaged in a range of finger and hand movements. We observed that the amplitudes of the low-pass filtered electrocorticogram (ECoG), also known as the local motor potential (LMP), over specific peri-Rolandic electrodes were correlated (p < 0.001) with the position of individual fingers as the subjects engaged in slow and deliberate grasping motions. A generalized linear model (GLM) of the LMP amplitudes from those electrodes yielded predictions for positions of the fingers that had a strong congruence with the actual finger positions (correlation coefficient, r; median = 0.51, maximum = 0.91), during displacements of up to 10 cm at the fingertips. For all the subjects, decoding filters trained on data from any given session were remarkably robust in their prediction performance across multiple sessions and days, and were invariant with respect to changes in wrist angle, elbow flexion and hand placement across these sessions (median r = 0.52, maximum r = 0.86). Furthermore, a reasonable prediction accuracy for grasp aperture was achievable with as few as three electrodes in all subjects (median r = 0.49; maximum r = 0.90). These results provide further evidence for the feasibility of robust and practical ECoG-based control of finger movements in upper extremity prosthetics.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2008

Asynchronous Decoding of Dexterous Finger Movements Using M1 Neurons

Vikram Aggarwal; Soumyadipta Acharya; Francesco Tenore; Hyun-Chool Shin; Ralph Etienne-Cummings; Marc H. Schieber; Nitish V. Thakor

Previous efforts in brain-machine interfaces (BMI) have looked at decoding movement intent or hand and arm trajectory, but current cortical control strategies have not focused on the decoding of 3 actions such as finger movements. The present work demonstrates the asynchronous decoding (i.e., where cues indicating the onset of movement are not known) of individual and combined finger movements. Single-unit activities were recorded sequentially from a population of neurons in the M1 hand area of trained rhesus monkeys during flexion and extension movements of each finger and the wrist. Nonlinear filters were designed to detect the onset of movement and decode the movement type from randomly selected neuronal ensembles (assembled from individually recorded single-unit activities). Average asynchronous decoding accuracies as high as 99.8%, 96.2%, and 90.5%, were achieved for individuated finger and wrist movements with three monkeys. Average decoding accuracy was still 92.5% when combined movements of two fingers were included. These results demonstrate that it is possible to asynchronously decode dexterous finger movements from a neuronal ensemble with high accuracy. This work takes an important step towards the development of a BMI for direct neural control of a state-of-the-art, multifingered hand prosthesis.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2008

Decoding Individuated Finger Movements Using Volume-Constrained Neuronal Ensembles in the M1 Hand Area

Soumyadipta Acharya; Francesco Tenore; Vikram Aggarwal; Ralph Etienne-Cummings; Marc H. Schieber; Nitish V. Thakor

Individuated finger and wrist movements can be decoded using random subpopulations of neurons that are widely distributed in the primary motor (M1) hand area. This work investigates 1) whether it is possible to decode dexterous finger movements using spatially-constrained volumes of neurons as typically recorded from a microelectrode array; and 2) whether decoding accuracy differs due to the configuration or location of the array within the M1 hand area. Single-unit activities were sequentially recorded from task-related neurons in two rhesus monkeys as they performed individuated movements of the fingers and the wrist. Simultaneous neuronal ensembles were simulated by constraining these activities to the recording field dimensions of conventional microelectrode array architectures. Artificial neural network (ANN) based filters were able to decode individuated finger movements with greater than 90% accuracy for the majority of movement types, using as few as 20 neurons from these ensemble activities. Furthermore, for the large majority of cases there were no significant differences (p < 0.01) in decoding accuracy as a function of the location of the recording volume. The results suggest that a brain-machine interface (BMI) for dexterous control of individuated fingers and the wrist can be implemented using microelectrode arrays placed broadly in the M1 hand area.


IEEE Pulse | 2012

Toward Electrocorticographic Control of a Dexterous Upper Limb Prosthesis: Building Brain-Machine Interfaces

Matthew S. Fifer; Soumyadipta Acharya; Heather L. Benz; Mohsen Mollazadeh; Nathan E. Crone; Nitish V. Thakor

In this paper, an ECoG-based system for controlling the MPL where patients were implanted with ECoG electrode grids for clinical seizure mapping and asked to perform various recorded finger or grasp movements.


IEEE Transactions on Biomedical Engineering | 2010

Neural Decoding of Finger Movements Using Skellam-Based Maximum-Likelihood Decoding

Hyun-Chool Shin; Vikram Aggarwal; Soumyadipta Acharya; Marc H. Schieber; Nitish V. Thakor

We present an optimal method for decoding the activity of primary motor cortex (M1) neurons in a nonhuman primate during single finger movements. The method is based on the maximum-likelihood (ML) inference, which assuming the probability of finger movements is uniform, is equivalent to the maximum a posteriori (MAP) inference. Each neurons activation is first quantified by the change in firing rate before and after finger movement. We then estimate the probability density function of this activation given finger movement, i.e., Pr(neuronal activation (x)| finger movements (m)). Based on the ML criterion, we choose finger movements to maximize Pr(x|m). Experimentally, data were collected from 115 task-related neurons in M1 as the monkey performed flexion and extension of each finger and the wrist (12 movements). With as few as 20-25 randomly selected neurons, the proposed method decoded single-finger movements with 99% accuracy. Since the training and decoding procedures in the proposed method are simple and computationally efficient, the method can be extended for real-time neuroprosthetic control of a dexterous hand.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2012

Connectivity Analysis as a Novel Approach to Motor Decoding for Prosthesis Control

Heather L. Benz; Huaijian Zhang; Anastasios Bezerianos; Soumyadipta Acharya; Nathan E. Crone; Xioaxiang Zheng; Nitish V. Thakor

The use of neural signals for prosthesis control is an emerging frontier of research to restore lost function to amputees and the paralyzed. Electrocorticography (ECoG) brain-machine interfaces (BMI) are an alternative to EEG and neural spiking and local field potential BMI approaches. Conventional ECoG BMIs rely on spectral analysis at specific electrode sites to extract signals for controlling prostheses. We compare traditional features with information about the connectivity of an ECoG electrode network. We use time-varying dynamic Bayesian networks (TV-DBN) to determine connectivity between ECoG channels in humans during a motor task. We show that, on average, TV-DBN connectivity decreases from baseline preceding movement and then becomes negative, indicating an alteration in the phase relationship between electrode pairs. In some subjects, this change occurs preceding and during movement, before changes in low or high frequency power. We tested TV-DBN output in a hand kinematic decoder and obtained an average correlation coefficient (r2) between actual and predicted joint angle of 0.40, and as high as 0.66 in one subject. This result compares favorably with spectral feature decoders, for which the average correlation coefficient was 0.13. This work introduces a new feature set based on connectivity and demonstrates its potential to improve ECoG BMI accuracy.


international conference of the ieee engineering in medicine and biology society | 2009

Cortical decoding of individual finger and wrist kinematics for an upper-limb neuroprosthesis

Vikram Aggarwal; Francesco Tenore; Soumyadipta Acharya; Marc H. Schieber; Nitish V. Thakor

Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R = 3D0.76-0.86, MSE = 3D0.04-0.05) and Kalman filter (R = 3D0.68-0.86, MSE = 3D0.04-0.07) performed better than a simple linear regression filter (0.58-0.81, 0.05-0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time.

Collaboration


Dive into the Soumyadipta Acharya's collaboration.

Top Co-Authors

Avatar

Nitish V. Thakor

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youseph Yazdi

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Francesco Tenore

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge