Soundharrajan Ilavenil
Rural Development Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soundharrajan Ilavenil.
Journal of Applied Microbiology | 2013
M. Valan Arasu; Min-Woong Jung; Soundharrajan Ilavenil; Mariamichael Jane; Da Hye Kim; Ki-Taek Lee; Hyung-Su Park; T.-Y. Hur; Gi Jun Choi; Young Chul Lim; Naif Abdullah Al-Dhabi; Ki Choon Choi
The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC‐10 from forage silage with potential beneficial properties.
Phytomedicine | 2014
Soundharrajan Ilavenil; Mariadhas Valan Arasu; Jeong-Chae Lee; Da Hye Kim; Sang-gun Roh; Hyung Su Park; Gi Jun Choi; Vijayakumar Mayakrishnan; Ki Choon Choi
Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.
Anaerobe | 2015
Mayakrishnan Vijayakumar; Soundharrajan Ilavenil; Da Hye Kim; Mariadhas Valan Arasu; Kannappan Priya; Ki Choon Choi
The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove its excellent as a potential probiotic candidate for developing quality food for ruminant animals and human.
Journal of the Science of Food and Agriculture | 2016
Soundharrajan Ilavenil; Mayakrishnan Vijayakumar; Da Hye Kim; Mariadhas Valan Arasu; Hyung Su Park; S. Ravikumar; Ki Choon Choi
BACKGROUND Lactic acid bacteria (LAB) are important for the processing of various food products. Although genetically modified organisms have contributed to improvements in various food products, there are some limitations. Thus, the discovery of wild strains from natural sources must be considered as the most suitable approach for identifying new LAB. Therefore, we planned to isolate and characterise the LAB from Italian ryegrass forage and evaluate their biological potential. RESULTS A total of 28 strains were isolated and screened for their anti-fungal and probiotic properties. A single strain was selected due to its antifungal and probiotic efficiency. The strain was identified as Pediococcus pentosaceus KCC-23. The strain KCC-23 showed effective inhibition against Aspergillus fumigatus, Pencillium chrysogenum, Pencillium roqueforti, Botrytis elliptica and Fusarium oxysporum. Further, it survived low pH, and the presence of bile salts and gastric juice. It exhibited significant aggregation and hydrophobicity properties. The KCC-23 effectively assimilated cholesterol and had the ability to utilise pre-biotics such as raffinose and inulin. Finally, KCC-23 exhibited significant free radical scavenging activity. CONCLUSION P. pentosaceus KCC-23 showed effective anti-fungal, probiotic and anti-oxidant properties and would be a promising isolate for exploitation in the formulation of food for ruminants and humans.
PLOS ONE | 2014
Mariadhas Valan Arasu; Soundharrajan Ilavenil; Da Hye Kim; Sang-gun Roh; Jeong-Chae Lee; Ki Choon Choi
Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.
The Scientific World Journal | 2015
Soundharrajan Ilavenil; Hyung Soo Park; Mayakrishnan Vijayakumar; Mariadhas Valan Arasu; Da Hye Kim; S. Ravikumar; Ki Choon Choi
The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.
Asian Pacific Journal of Tropical Medicine | 2015
Soundharrajan Ilavenil; Da Hye Kim; Young-Il Jeong; Mariadhas Valan Arasu; Mayakrishnan Vijayakumar; Ponnuraj Nagendra Prabhu; Srisesharam Srigopalram; Ki Choon Choi
OBJECTIVE To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells. METHODS Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR. RESULTS It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2. CONCLUSIONS It is suggested that less than 125 μ M of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.
Journal of the Science of Food and Agriculture | 2014
Mariadhas Valan Arasu; Min-Woong Jung; Soundharrajan Ilavenil; Da Hye Kim; Hyung Su Park; Jung Won Park; Naif Abdullah Al-Dhabi; Ki Choon Choi
BACKGROUND The aim of the present study was to isolate high cell density Lactobacillus (LAB) from different forages and select the best strains for production of silage with improved the lactic acid production. RESULTS Twenty heterofermentative LAB strains were selected and their probiotic properties were analyzed by evaluating their tolerance to low pH, bile salts, biogenic amine production, enzyme activity, antibiotic susceptibility pattern and antifungal activity. The 16S rRNA gene-based phylogenetic affiliation indicated that 16 strains were Lactobacillus plantarum and others were L. bobalius, L. zymae, L. crustorum and L. diolivorans. Shake-flask cultivation of these strains under aerobic conditions showed comparatively higher growth and organic acid production than that achieved using the well-studied LAB strains. In addition, all the strains were highly sensitive towards ox gall (0.3%), but grew well in the presence of sodium taurocholate (0.3%). Antimicrobial susceptibility pattern is an intrinsic feature of these LAB strains; thus consumption does not represent a health risk to humans. Lactobacillus plantarum strains exhibited considerable antifungal activity against food pathogens. CONCLUSION The present finding raises the possibility that high cell density LAB strains with potential probiotic properties could be used to prepare quality silages for animals.
Saudi Journal of Biological Sciences | 2016
Mariadhas Valan Arasu; Naif Abdullah Al-Dhabi; Soundharrajan Ilavenil; Ki Choon Choi; Srisesharam Srigopalram
Lactobacillus plantarum is a Gram positive lactic acid bacterium commonly found in fermented food and in the gastro intestinal tract and is commonly used in the food industry as a potential starter probiotic. Recently, the consumption of food together with probiotics has tremendously increased. Among the lactic acid bacteria, L. plantarum attracted many researchers because of its wide applications in the medical field with antioxidant, anticancer, anti-inflammatory, antiproliferative, anti-obesity and antidiabetic properties. The present study aimed to investigate the in vitro importance of L. plantarum toward medical applications. Moreover, this report short listed various reports related to the applications of this promising strain. In conclusion, this study would attract the researchers in commercializing this strain toward the welfare of humans related to medical needs.
Molecules | 2016
Soundharrajan Ilavenil; Da Kim; Srisesharam Srigopalram; Mariadhas Valan Arasu; Kyung Dong Lee; Jeong Lee; Jong Lee; Senthil Renganathan; Ki Choon Choi
Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets.