Souradip Malkhandi
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Souradip Malkhandi.
Journal of Physical Chemistry Letters | 2012
Souradip Malkhandi; Bo Yang; Aswin K. Manohar; Ayyakkannu Manivannan; G. K. Surya Prakash; S. R. Narayanan
Calcium-doped lanthanum cobalt oxide is a promising electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolyte. Nanocrystalline perovskite of composition La0.6Ca0.4CoO3 with a unique cellular internal structure was prepared at 350 °C and then annealed in air at progressively higher temperatures in the range of 600-750 °C. The samples were characterized by electrochemical techniques and X-ray photoelectron spectroscopy. The area-specific electrocatalytic activity for oxygen evolution/oxygen reduction, the oxidation state of cobalt, and the crystallite size increased with annealing temperature, while the Tafel slope remained constant. These trends provide new insights into the role of the cobalt center in oxygen evolution and oxygen reduction, and how preparation conditions can be altered to tune the activity of the cobalt center for electrocatalysis. We expect these findings to guide the design of electrocatalysts for bifunctional oxygen electrodes, in general.
Journal of the American Chemical Society | 2013
Souradip Malkhandi; Bo Yang; Aswin K. Manohar; G. K. Surya Prakash; S. R. Narayanan
Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.
Energy and Environmental Science | 2014
Bo Yang; Souradip Malkhandi; Aswin K. Manohar; G. K. Surya Prakash; S. R. Narayanan
Rechargeable iron–air and nickel–iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is “de-passivation” that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.
Solid State Ionics | 2012
S. R. Narayanan; G. K. Surya Prakash; Aswin K. Manohar; Bo Yang; Souradip Malkhandi; Andrew Kindler
Journal of The Electrochemical Society | 2012
Aswin K. Manohar; Souradip Malkhandi; Bo Yang; Chenguang Yang; G. K. Surya Prakash; S. R. Narayanan
Journal of The Electrochemical Society | 2013
Souradip Malkhandi; Phong Trinh; Aswin K. Manohar; K. C. Jayachandrababu; Andrew Kindler; G. K. Surya Prakash; S. R. Narayanan
Journal of The Electrochemical Society | 2013
Aswin K. Manohar; Chenguang Yang; Souradip Malkhandi; G. K. Surya Prakash; S. R. Narayanan
Journal of The Electrochemical Society | 2012
Aswin K. Manohar; Chenguang Yang; Souradip Malkhandi; Bo Yang; G. K. Surya Prakash; S. R. Narayanan
Journal of Physical Chemistry C | 2015
Souradip Malkhandi; Phong Trinh; Aswin K. Manohar; Ayyakkannu Manivannan; M. Balasubramanian; G. K. Surya Prakash; S. R. Narayanan
Archive | 2012
Sri R. Narayan; G. K. Surya Prakash; Robert Aniszfeld; Aswin K. Manohar; Souradip Malkhandi; Bo Yang