Sourav Bhattacharjee
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sourav Bhattacharjee.
Journal of Controlled Release | 2016
Sourav Bhattacharjee
Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
Particle and Fibre Toxicology | 2010
Sourav Bhattacharjee; Laura H.J. de Haan; Nynke M. Evers; Xue Jiang; Antonius T. M. Marcelis; Han Zuilhof; Ivonne M. C. M. Rietjens; Gerrit M. Alink
BackgroundSurface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH.ResultsPositively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP.ConclusionSurface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity.
Nanoscale | 2013
Sourav Bhattacharjee; Ivonne M. C. M. Rietjens; Mani P. Singh; Tonya M. Atkins; Tapas K. Purkait; Zejing Xu; Sarah Regli; Amber M. Shukaliak; Rhett J. Clark; Brian S. Mitchell; Gerrit M. Alink; Antonius T. M. Marcelis; Mark J. Fink; Jonathan G. C. Veinot; Susan M. Kauzlarich; Han Zuilhof
Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe(3+) ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (ΔΨm) and ATP production, induction of ROS generation, increased cytoplasmic Ca(2+) content, production of TNF-α and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine.
Nanotoxicology | 2009
L. Ruizendaal; Sourav Bhattacharjee; K. Pournazari; M. Rosso-Vasic; L.H.J. de Haan; Gerrit M. Alink; Antonius T. M. Marcelis; Han Zuilhof
Abstract A series of highly monodisperse silicon nanoparticles (Si NPs) with either positively (amine), neutral (azide) or negatively (carboxylic acid) charged covalently attached organic monolayers were synthesized and investigated for their cytotoxicity. Infrared data confirmed the presence of these covalently attached surface groups. The Si NPs were characterized by absorption and fluorescence spectroscopy. The cytotoxicity was investigated in Caco-2 cells by determining the cell viability and proliferation. The IC50 values for the Si NPs ranged from 20 μg/l for the amine-terminated Si NPs, via 550–850 μg/l for the azide-terminated Si NPs to non-toxic (no measureable IC50) for the carboxylic acid-terminated Si NPs. These results indicate a trend in cytotoxicity, depending on surface charge, i.e., that positively charged Si NPs are more cytotoxic than negatively charged Si NPs. Interestingly, it appeared that the cytotoxicity of the Si NP-NH2 depends strongly on the presence of fetal calf serum in the medium.
Particle and Fibre Toxicology | 2012
Sourav Bhattacharjee; Dmitry Ershov; Kleanthis Fytianos; Jasper van der Gucht; Gerrit M. Alink; Ivonne M. C. M. Rietjens; Antonius T. M. Marcelis; Han Zuilhof
BackgroundPolymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce.ResultsFluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP90 (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨm), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨm), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP90.ConclusionsThe size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨm), uncoupling of the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely all play a role in the mechanisms behind the cytotoxicity of these PNP.
Nanotoxicology | 2013
Sourav Bhattacharjee; Dmitry Ershov; Jasper van der Gucht; Gerrit M. Alink; Ivonne M. C. M. Rietjens; Han Zuilhof; Antonius T. M. Marcelis
Abstract A series of monodisperse (45 ± 5 nm) fluorescent nanoparticles from tri-block copolymers (polymeric nanoparticles (PNPs)) bearing different surface charges were synthesised and investigated for cytotoxicity in NR8383 and Caco-2 cells. The positive PNPs were more cytotoxic and induced a higher intracellular reactive oxygen species production than the neutral and negative ones. The cytotoxicity of positive PNPs with quaternary ammonium groups decreased with increasing steric bulk. The intracellular uptake and cellular interactions of these different PNPs were also tested in NR8383 cells by confocal laser scanning microscopy, which revealed higher uptake for positive than for negative PNPs. Also positive PNPs were found to interact much more with cell membranes, whereas the negative PNPs were internalised mainly by lysosomal endocytosis. Uptake of positive PNPs decreased with increasing steric bulk around the positive charge. A surface charge-specific interaction of clathrin for positive PNPs and caveolin receptors for negative PNPs was observed. These findings confirm that surface charge is important for the cytotoxicity of these PNPs, while they additionally point to considerable additional effects of the steric shielding around positive charges on PNP cytotoxicity.
Nanotoxicology | 2014
Merel Jc van der Ploeg; Johannes H.J. van den Berg; Sourav Bhattacharjee; Laura H.J. de Haan; Dmitry Ershov; Remco Fokkink; Han Zuilhof; Ivonne M. C. M. Rietjens; Nico W. van den Brink
Abstract Sensitivity of immune cells (coelomocytes) of Lumbricus rubellus earthworms was investigated for exposure to selected nanoparticles, in order to obtain further insight in mechanisms of effects observed after in vivo C60 exposure. In the in vivo study, tissue damage appeared to occur without accompanying increased immune responses. Coelomocytes exposed in vitro to C60 showed no decrease of their cellular viability, but demonstrated a decrease in gene expression of the cytokine-like protein CCF-1, indicating immunosuppression. Experiments with NR8383 rat macrophage cells and tri-block copolymer nanoparticles were used to compare sensitivity and to demonstrate the usefulness of coelomocytes as a test system for nano-immunotoxicity, respectively. Overall, the results imply that sensitivity towards nanoparticles differs between cell types and nanoparticles. Moreover, this study indicates that injuries in absence of an immune response, observed after in vivo C60 exposure in our earlier work, are caused by immunosuppression rather than coelomocyte mortality.
RSC Advances | 2014
Sourav Bhattacharjee; Dmitry Ershov; Mohammed A. Islam; Angela M. Kämpfer; Katarzyna A. Maslowska; Jasper van der Gucht; Gerrit M. Alink; Antonius T. M. Marcelis; Han Zuilhof; Ivonne M. C. M. Rietjens
Surface charge is often hypothesized to influence toxicity of nanoparticles (NPs) including polymeric nanoparticles (PNPs) while oxidative stress is considered to be an important mode of action (MOA) for such toxicity. In order to investigate the role of membrane disturbance and oxidative stress in the MOA of PNPs, the cytotoxicity and a range of related cellular endpoints induced by monodisperse, fluorescent, cationic and anionic polystyrene nanoparticles (PSNPs) of 50 and 100 nm sizes were investigated in vitro in macrophage NR8383 cells. Only amine-terminated cationic PSNPs exhibited cytotoxicity which was accompanied by induction of intracellular reactive oxygen species (ROS), increased levels of cytoplasmic free calcium, a reduced phagocytic index, a reduced mitochondrial membrane potential (ΔΨm) and a decreased intracellular ATP content with the effects being more pronounced for 50 nm than 100 nm PSNPs. Both cationic and anionic PSNPs were found to increase the roughness of the cell membrane with the effect being more profound for cationic PSNPs. The pattern of protection by cellular antioxidants against the effects induced by positive PSNPs was similar to the pattern of protection against effects induced by the mitochondrial electron transport disrupting agent 2,4-dinitrophenol (DNP) and dissimilar to that for protection against the model compound for oxidative stress, i.e. hydrogen peroxide (H2O2). Surface charge influences the cellular interaction for NPs. The results collectively indicated that membrane interaction, and disturbance of the mitochondrial electronic transport chain (ETC) may represent a principal mechanism of toxicity for cationic PSNPs resulting in ROS production and oxidative stress as secondary effects.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Sourav Bhattacharjee; Eugene Mahon; Sabine M. Harrison; Jim McGetrick; Mohankumar Muniyappa; Stephen D. Carrington; David J. Brayden
A micro-slide chamber was used to screen and rank sixteen functionalized fluorescent silica nanoparticles (SiNP) of different sizes (10, 50, 100 and 200 nm) and surface coatings (aminated, carboxylated, methyl-PEG1000ylated, and methyl-PEG2000ylated) according to their capacity to permeate porcine jejunal mucus. Variables investigated were influence of particle size, surface charge and methyl-PEGylation. The anionic SiNP showed higher transport through mucus whereas the cationic SiNP exhibited higher binding with lower transport. A size-dependence in transport was identified - 10 and 50 nm anionic (uncoated or methyl-PEGylated) SiNP showed higher transport compared to the larger 100 and 200 nm SiNP. The cationic SiNP of all sizes interacted with the mucus, making it more viscous and less capable of swelling. In contrast, the anionic SiNP (uncoated or methyl-PEGylated) caused minimal changes in the viscoelasticity of mucus. The data provide insights into mucus-NP interactions and suggest a rationale for designing oral nanomedicines with improved mucopermeability.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Sourav Bhattacharjee; David J. Brayden
Current nanotoxicology research suffers from suboptimal in vitro models, lack of in vitro-in vivo correlations, variability within in vitro protocols, deficits in both material purity and physicochemical characterization. Reliable nanomaterial toxicity and mechanistic insights are required for health and toxicity risk assessments. Much in vitro toxicological data is inconclusive in designating whether nanomaterials for drug delivery and medical device implants are truly safe. A critique is presented to analyze the interface between toxicology and nanopharmaceuticals. Deficiencies of existing practices in toxicology are reviewed and useful emerging techniques (e.g., lab-on-a-chip, tissue engineering, atomic force microscopy, high-content analysis) are highlighted. Cross-fertilization between disciplines will aid development of biocompatible delivery and implant platforms while improvements are being suggested for better translation of nanotoxicology.