Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soyeong Sim is active.

Publication


Featured researches published by Soyeong Sim.


Molecular Biology of the Cell | 2009

The Subcellular Distribution of an RNA Quality Control Protein, the Ro Autoantigen, Is Regulated by Noncoding Y RNA Binding

Soyeong Sim; David E. Weinberg; Gabriele Fuchs; Keum Choi; Jina Chung; Sandra L. Wolin

The Ro autoantigen is a ring-shaped RNA-binding protein that binds misfolded RNAs in nuclei and is proposed to function in quality control. In the cytoplasm, Ro binds noncoding RNAs, called Y RNAs, that inhibit access of Ro to other RNAs. Ro also assists survival of mammalian cells and at least one bacterium after UV irradiation. In mammals, Ro undergoes dramatic localization changes after UV irradiation, changing from mostly cytoplasmic to predominantly nuclear. Here, we report that a second role of Y RNAs is to regulate the subcellular distribution of Ro. A mutant Ro protein that does not bind Y RNAs accumulates in nuclei. Ro also localizes to nuclei when Y RNAs are depleted. By assaying chimeric proteins in which portions of mouse Ro were replaced with bacterial Ro sequences, we show that nuclear accumulation of Ro after irradiation requires sequences that overlap the Y RNA binding site. Ro also accumulates in nuclei after oxidative stress, and similar sequences are required. Together, these data reveal that Ro contains a signal for nuclear accumulation that is masked by a bound Y RNA and suggest that Y RNA binding may be modulated during cell stress.


Journal of Virology | 2009

Packaging of Host mY RNAs by Murine Leukemia Virus May Occur Early in Y RNA Biogenesis

Eric L. Garcia; Adewunmi Onafuwa-Nuga; Soyeong Sim; Steven R. King; Sandra L. Wolin; Alice Telesnitsky

ABSTRACT Moloney murine leukemia virus (MLV) selectively encapsidates host mY1 and mY3 RNAs. These noncoding RNA polymerase III transcripts are normally complexed with the Ro60 and La proteins, which are autoantigens associated with rheumatic disease that function in RNA biogenesis and quality control. Here, MLV replication and mY RNA packaging were analyzed using Ro60 knockout embryonic fibroblasts, which contain only ∼3% as much mY RNA as wild-type cells. Virus spread at the same rate in wild-type and Ro knockout cells. Surprisingly, MLV virions shed by Ro60 knockout cells continued to package high levels of mY1 and mY3 (about two copies of each) like those from wild-type cells, even though mY RNAs were barely detectable within producer cells. As a result, for MLV produced in Ro60 knockout cells, encapsidation selectivity from among all cell RNAs was even higher for mY RNAs than for the viral genome. Whereas mY RNAs are largely cytoplasmic in wild-type cells, fractionation of knockout cells revealed that the residual mY RNAs were relatively abundant in nuclei, likely reflecting the fact that most mY RNAs were degraded shortly after transcription in the absence of Ro60. Together, these data suggest that these small, labile host RNAs may be recruited at a very early stage of their biogenesis and may indicate an intersection of retroviral assembly and RNA quality control pathways.


Wiley Interdisciplinary Reviews - Rna | 2011

Emerging roles for the Ro 60 kDa autoantigen in noncoding RNA metabolism

Soyeong Sim; Sandra L. Wolin

All cells contain an enormous variety of ribonucleoprotein (RNP) complexes that function in diverse processes. Although the mechanisms by which many of these RNPs contribute to cell metabolism are well understood, the roles of others are only now beginning to be revealed. A member of this latter category, the Ro 60‐kDa protein and its associated noncoding Y RNAs, was discovered because the protein component is a frequent target of the autoimmune response in patients with the rheumatic diseases systemic lupus erythematosus and Sjögrens syndrome. Recent studies have shown that Ro is ring shaped, binds the single‐stranded ends of misfolded noncoding RNAs in its central cavity, and may function in noncoding RNA quality control. Although Ro is not present in yeast, many bacterial genomes contain potential Ro orthologs. In the radiation‐resistant eubacterium Deinococcus radiodurans, the Ro ortholog functions with exoribonucleases during stress‐induced changes in RNA metabolism. Moreover, in both D. radiodurans and animal cells, Ro is involved in the response to multiple types of environmental stress. Finally, Y RNAs can influence the subcellular location of Ro, inhibit access of the central cavity to other RNAs, and may also act as binding sites for proteins that influence Ro function. WIREs RNA 2011 2 686–699 DOI: 10.1002/wrna.85


Trends in Genetics | 2012

Nuclear noncoding RNA surveillance: is the end in sight?

Sandra L. Wolin; Soyeong Sim; Xinguo Chen

Nuclear noncoding RNA (ncRNA) surveillance pathways play key roles in shaping the steady-state transcriptomes of eukaryotic cells. Defective and unneeded ncRNAs are primarily degraded by exoribonucleases that rely on protein cofactors to identify these RNAs. Recent studies have begun to elucidate both the mechanisms by which these cofactors recognize aberrant RNAs and the features that mark RNAs for degradation. One crucial RNA determinant is the presence of an accessible end; in addition, the failure of aberrant RNAs to fold into compact structures and assemble with specific binding proteins probably also contributes to their recognition and subsequent degradation. To date, ncRNA surveillance has been most extensively studied in budding yeast. However, mammalian cells possess nucleases and cofactors that have no known yeast counterparts, indicating that RNA surveillance pathways may be more complex in metazoans. Importantly, there is evidence that the failure of ncRNA surveillance pathways contributes to human disease.


Journal of Immunology | 2013

Ro60 Requires Y3 RNA for Cell Surface Exposure and Inflammation Associated with Cardiac Manifestations of Neonatal Lupus

Joanne H. Reed; Soyeong Sim; Sandra L. Wolin; Robert R. Clancy; Jill P. Buyon

Cardiac neonatal lupus (NL) is presumed to arise from maternal autoantibody targeting an intracellular ribonucleoprotein, Ro60, which binds noncoding Y RNA and only becomes accessible to autoantibodies during apoptosis. Despite the importance of Ro60 trafficking in the development of cardiac NL, the mechanism underlying cell surface exposure is unknown. To evaluate the influence of Y RNA on the subcellular location of Ro60 during apoptosis and activation of macrophages, stable Ro60 knockout murine fibroblasts expressing wild-type or mutated FLAG-Ro60 were assessed. FLAG3-Ro60(K170A R174A) binds Y RNA, whereas FLAG3-Ro60(H187S) does not bind Y RNA; fibroblasts expressing these constructs showed equivalent intracellular expression of Ro60. In contrast, apoptotic fibroblasts containing FLAG3-Ro60(K170A R174A) were bound by anti-Ro60, whereas FLAG3-Ro60(H187S) was not surface expressed. RNA interference of mY3 RNA in wild-type fibroblasts inhibited surface translocation of Ro60 during apoptosis, whereas depletion of mY1 RNA did not affect Ro60 exposure. Furthermore, Ro60 was not exposed following overexpression of mY1 in the mY3-depleted fibroblasts. In an in vitro model of anti-Ro60–mediated injury, Y RNA was shown to be an obligate factor for TLR-dependent activation of macrophages challenged with anti-Ro60–opsonized apoptotic fibroblasts. Murine Y3 RNA is a necessary factor to support the surface translocation of Ro60, which is pivotal to the formation of immune complexes on apoptotic cells and a TLR-dependent proinflammatory cascade. Accordingly, the Y3 RNA moiety of the Ro60 ribonucleoprotein imparts a critical role in the pathogenicity of maternal anti-Ro60 autoantibodies.


RNA | 2012

The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA

Soyeong Sim; Jie Yao; David E. Weinberg; Sherry Niessen; John R. Yates; Sandra L. Wolin

The Ro 60-kDa autoantigen, a ring-shaped RNA-binding protein, traffics between the nucleus and cytoplasm in vertebrate cells. In some vertebrate nuclei, Ro binds misfolded noncoding RNAs and may function in quality control. In the cytoplasm, Ro binds noncoding RNAs called Y RNAs. Y RNA binding blocks a nuclear accumulation signal, retaining Ro in the cytoplasm. Following UV irradiation, this signal becomes accessible, allowing Ro to accumulate in nuclei. To investigate how other cellular components influence the function and subcellular location of Ro, we identified several proteins that copurify with the mouse Ro protein. Here, we report that the zipcode-binding protein ZBP1 influences the subcellular localization of both Ro and the Y3 RNA. Binding of ZBP1 to the Ro/Y3 complex increases after UV irradiation and requires the Y3 RNA. Despite the lack of an identifiable CRM1-dependent export signal, nuclear export of Ro is sensitive to the CRM1 inhibitor leptomycin B. In agreement with a previous report, we find that ZBP1 export is partly dependent on CRM1. Both Ro and Y3 RNA accumulate in nuclei when ZBP1 is depleted. Our data indicate that ZBP1 may function as an adapter to export the Ro/Y3 RNA complex from nuclei.


Genes & Development | 2015

A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway

Matthew J. Eckwahl; Soyeong Sim; Derek Smith; Alice Telesnitsky; Sandra L. Wolin

Although all retroviruses recruit host cell RNAs into virions, both the spectrum of RNAs encapsidated and the mechanisms by which they are recruited remain largely unknown. Here, we used high-throughput sequencing to obtain a comprehensive description of the RNAs packaged by a model retrovirus, murine leukemia virus. The major encapsidated host RNAs are noncoding RNAs (ncRNAs) and members of the VL30 class of endogenous retroviruses. Remarkably, although Moloney leukemia virus (MLV) assembles in the cytoplasm, precursors to specific tRNAs, small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs) are all enriched in virions. Consistent with their cytoplasmic recruitment, packaging of both pre-tRNAs and U6 snRNA requires the nuclear export receptor Exportin-5. Adenylated and uridylated forms of these RNAs accumulate in cells and virions when the cytoplasmic exoribonuclease DIS3L2 and subunits of the RNA exosome are depleted. Together, our data reveal that MLV recruits RNAs from a novel host cell surveillance pathway in which unprocessed and unneeded nuclear ncRNAs are exported to the cytoplasm for degradation.


RNA | 2014

Bacterial noncoding Y RNAs are widespread and mimic tRNAs.

Xinguo Chen; Soyeong Sim; Elisabeth J. Wurtmann; Ann Feke; Sandra L. Wolin

Many bacteria encode an ortholog of the Ro60 autoantigen, a ring-shaped protein that is bound in animal cells to noncoding RNAs (ncRNAs) called Y RNAs. Studies in Deinococcus radiodurans revealed that Y RNA tethers Ro60 to polynucleotide phosphorylase, specializing this exoribonuclease for structured RNA degradation. Although Ro60 orthologs are present in a wide range of bacteria, Y RNAs have been detected in only two species, making it unclear whether these ncRNAs are common Ro60 partners in bacteria. In this study, we report that likely Y RNAs are encoded near Ro60 in >250 bacterial and phage species. By comparing conserved features, we discovered that at least one Y RNA in each species contains a domain resembling tRNA. We show that these RNAs contain nucleotide modifications characteristic of tRNA and are substrates for several enzymes that recognize tRNAs. Our studies confirm the importance of Y RNAs in bacterial physiology and identify a new class of ncRNAs that mimic tRNA.


RNA Biology | 2013

Non-coding Y RNAs as tethers and gates: Insights from bacteria.

Sandra L. Wolin; Cedric Belair; Marco Boccitto; Xinguo Chen; Soyeong Sim; David W. Taylor; Hong-Wei Wang

Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins.


Science Translational Medicine | 2018

Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus

Teri M. Greiling; Carina Dehner; Xinguo Chen; Kevin Hughes; Alonso J. Iñiguez; Marco Boccitto; Daniel Zegarra Ruiz; Stephen C. Renfroe; Silvio M. Vieira; William Ruff; Soyeong Sim; Christina Kriegel; Julia Glanternik; Xindi Chen; Michael Girardi; Patrick H. Degnan; Karen H. Costenbader; Andrew L. Goodman; Sandra L. Wolin; Martin A. Kriegel

Commensal bacterial orthologs of the human autoantigen Ro60 may trigger cross-reactive T and B cells that initiate and sustain chronic autoimmunity in lupus. Autoimmune initiation by bacterial antigens Lupus patients react to many self-proteins throughout the course of disease, with some of the earliest autoantibodies targeting the RNA binding protein Ro60. Greiling and colleagues sampled the microbiota of lupus patients and detected commensals with orthologs of human Ro60. These bacterial Ro60 proteins could be recognized by patient sera and stimulated patient T cells. Colonization of germ-free mice also led to human Ro60 reactivity and lupus-like symptoms, strongly indicating that molecular mimicry of the commensal Ro60 could be triggering autoreactivity and driving disease progression. These striking results have implications beyond lupus and could help uncover global mechanisms of autoimmune pathogenesis. The earliest autoantibodies in lupus are directed against the RNA binding autoantigen Ro60, but the triggers against this evolutionarily conserved antigen remain elusive. We identified Ro60 orthologs in a subset of human skin, oral, and gut commensal bacterial species and confirmed the presence of these orthologs in patients with lupus and healthy controls. Thus, we hypothesized that commensal Ro60 orthologs may trigger autoimmunity via cross-reactivity in genetically susceptible individuals. Sera from human anti-Ro60–positive lupus patients immunoprecipitated commensal Ro60 ribonucleoproteins. Human Ro60 autoantigen–specific CD4 memory T cell clones from lupus patients were activated by skin and mucosal Ro60-containing bacteria, supporting T cell cross-reactivity in humans. Further, germ-free mice spontaneously initiated anti-human Ro60 T and B cell responses and developed glomerular immune complex deposits after monocolonization with a Ro60 ortholog–containing gut commensal, linking anti-Ro60 commensal responses in vivo with the production of human Ro60 autoantibodies and signs of autoimmunity. Together, these data support that colonization with autoantigen ortholog-producing commensal species may initiate and sustain chronic autoimmunity in genetically predisposed individuals. The concept of commensal ortholog cross-reactivity may apply more broadly to autoimmune diseases and lead to novel treatment approaches aimed at defined commensal species.

Collaboration


Dive into the Soyeong Sim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge