Spencer D. Snow
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Spencer D. Snow.
ASME PVP 2007/Creep 8,San Antonio, Texas,07/22/2007,07/26/2007 | 2007
Robert K. Blandford; Dana K. Morton; Spencer D. Snow; Tommy Ervin Rahl
The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 °F to 600 °F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young’s modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper.
2005 ASME Pressure Vessel and Piping Division Conference,Denver, CO,07/17/2005,07/21/2005 | 2005
Robert K. Blandford; Dana K. Morton; Tommy Ervin Rahl; Spencer D. Snow
Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.
ASME Pressure Vessels and Piping Division Conference,Prague, Czech Republic,07/26/2009,07/30/2009 | 2009
Spencer D. Snow; Dana K. Morton
The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code was primarily written with stress-based acceptance criteria. These criteria are applicable to force, displacement, and energy-controlled loadings and ensure a factor of safety against failure. However, stress-based acceptance criteria are often quite conservative for one time energy-limited events such as accidental drops and impacts. For several years, the ASME Working Group on Design of Division 3 Containments has been developing the Design Articles for Section III, Division 3, “Containments for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material and Waste,” and has wanted to establish strain-based acceptance criteria for accidental drops of containments. This Division 3 working group asked the Working Group on Design Methodology (WGDM) to assist in developing these strain-based acceptance criteria. This paper discusses the current proposed strain-based acceptance criteria, associated limitations of use, its background development, and the current status.
Pressure Vessels and Piping 2007,San Antonio, Texas,07/22/2007,07/26/2007 | 2007
Dana K. Morton; Spencer D. Snow; Tom E. Rahl; Robert K. Blandford
Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for 304/304L and 316/316L stainless steel material specimens. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.
ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference | 2006
Spencer D. Snow; D. Keith Morton; Tommy Ervin Rahl; Robert K. Blandford; Thomas J. Hill
Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. However, two previous papers [1, 2] reported on impact tensile testing and analysis results performed at the Idaho National Laboratory using 304L and 316L stainless steel specimens that began the investigation of these characteristics. The goal of the work presented herein is to: (1) add the results of additional tensile impact testing for 304L stainless steel specimens, and (2) show that the application of the strain rate-dependent material curves (determined through that tensile impact testing) to specimens designed to respond in bending during impact loading would yield accurate deformation and strain predictions.Copyright
Transportation, Storage, and Disposal of Radioactive Materials | 2004
Spencer D. Snow; D. Keith Morton; Tommy Ervin Rahl; Robert K. Blandford; Thomas J. Hill
The Idaho National Engineering and Environmental Laboratory (INEEL) developed an apparatus capable of supporting a wide variety of material studies and distinct component testing under impact loads. Material studies include material (metals, plastics, concrete, etc.) response due to bending, tension, shear, and compression loadings at elevated strain rates. Similar testing can also be performed on any distinct component fitting within the apparatus impact loading volume. This apparatus is referred to as the Impact Test Machine (ITM). The ITM is initially being used by the Department of Energy (DOE) to test 304L and 316L stainless steel tensile test specimens at various strain rates for comparison to static properties. The goal is to ultimately develop true stress-strain curves at various strain rates and temperatures for these steels. These curves can then be used in analytical simulations to more accurately predict the deformation and resulting material straining in spent nuclear fuel (SNF) containers, canisters, and casks under accidental drop events (Ref: Snow 1999, 2000). Test results can also help determine a basis for establishing allowable strain limits for these large deformation, inelastic events. This material investigation is currently in an early stage of development. This paper will discuss the results of tensile tests performed on test specimens employed in the formulation of the test process and initial checkout of the ITM.Copyright
Archive | 2015
Spencer D. Snow; Dana K. Morton
The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.
ASME 2013 Pressure Vessels and Piping Conference | 2013
Chi-Fung Tso; David P. Molitoris; Michael Yaksh; Spencer D. Snow; Doug Ammerman; Gordon S. Bjorkman
The ASME Special Working Group on Computational Modeling for Explicit Dynamics was founded in August 2008 for the purpose of creating a quantitative guidance document for the development of finite element models used to analyze energy-limited events using explicit dynamics software. This document will be referenced in the ASME Code Section III, Division 3 and the next revision of NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. One portion of the document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different element types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results.In this paper, the authors present the results of a convergence study for an impulsively loaded propped cantilever beam constructed of LS-DYNA hexahedral elements using both reduced and selectively reduced integration. Three loading levels are considered; the first maintains strains within the elastic range, the second induces moderate plastic strains, and the third produces large deformations and large plastic strains.Copyright
ASME Pressure Vessels and Piping Division Conference,Chicago, Illinois,07/27/2008,07/31/2008 | 2008
Dana K. Morton; Robert K. Blandford; Spencer D. Snow
Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.
American Society of Mechanical Engineers PVP-2000,Seattle, WA,07/23/2000,07/27/2000 | 2000
Spencer D. Snow; Dana K. Morton; Tommy Ervin Rahl; Arthur Gates Ware; Nancy Lynn Smith