Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Spencer Kuhl is active.

Publication


Featured researches published by Spencer Kuhl.


Journal of Cell Science | 2007

PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis.

Deborah Wessels; Daniel F. Lusche; Spencer Kuhl; Paul J. Heid; David R. Soll

It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten– mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten– cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten– cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.


Journal of Cell Science | 2006

The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis

Deborah Wessels; Thyagarajan Srikantha; Song Yi; Spencer Kuhl; L. Aravind; David R. Soll

The Shwachman-Bodian-Diamond syndrome (SBDS) is an autosomal disorder with multisystem defects. The Shwachman-Bodian-Diamond syndrome gene (SBDS), which contains mutations in a majority of SBDS patients, encodes a protein of unknown function, although it has been strongly implicated in RNA metabolism. There is also some evidence that it interacts with molecules that regulate cytoskeletal organization. Recently, it has been demonstrated by computer-assisted methods that the single behavioral defect of polymorphonuclear leukocytes (PMNs) of SBDS patients is the incapacity to orient correctly in a spatial gradient of chemoattractant. We considered using the social amoeba Dictyostelium discoideum, a model for PMN chemotaxis, an excellent system for elucidating the function of the SBDS protein. We first identified the homolog of SBDS in D. discoideum and found that the amino acids that are altered in human disease were conserved. Given that several proteins involved in chemotactic orientation localize to the pseudopods of cells undergoing chemotaxis, we tested whether the SBDS gene product did the same. We produced an SBDS-GFP chimeric in-frame fusion gene, and generated transformants either with multiple ectopic insertions of the fusion gene or multiple copies of a non-integrated plasmid carrying the fusion gene. In both cases, the SBDS-GFP protein was dispersed equally through the cytoplasm and pseudopods of cells migrating in buffer. However, we observed differential enrichment of SBDS in the pseudopods of cells treated with the chemoattractant cAMP, suggesting that the SBDS protein may play a role in chemotaxis. In light of these results, we discuss how SBDS might function during chemotaxis.


Journal of Cell Science | 2003

Shared, unique and redundant functions of three members of the class I myosins (MyoA, MyoB, and MyoF) in motility and chemotaxis in Dictyostelium

David L. Falk; Deborah Wessels; Leslie M. Jenkins; Tien Pham; Spencer Kuhl; Margaret A. Titus; David R. Soll

Most cell types express two distinct forms of myosin I, amoeboid and short, distinguished by differences in their tail domains. Both types of myosin I have been implicated in the regulation of pseudopod formation in Dictyostelium discoideum. We examined three members of the myosin I family, one amoeboid, MyoB, and two short, MyoA and MyoB, for shared, unique and redundant functions in motility and chemotaxis. We used computer-assisted methods for reconstructing and motion analyzing cells, and experimental protocols for assessing the basic motile behavior of mutant cells in buffer and the responses of these cells to the individual spatial, temporal and concentration components of the natural wave of the chemoattractant cAMP. Analysis of both single and double mutants revealed that all three myosins play independent roles in suppressing lateral pseudopod formation in buffer and during chemotaxis. One, MyoB, also plays a unique role in priming cells to respond to the increasing temporal cAMP gradient in the front of a wave, while MyoF plays a unique role in maintaining the elongate, polarized shape of a cell in buffer, during chemotaxis in a spatial gradient of cAMP and in the front of a cAMP wave. Finally, MyoA and MyoF play redundant roles in the velocity response to the increasing temporal cAMP gradient in the front of a wave. These results, therefore, reveal an unexpected variety of shared, unique and redundant functions of the three class I myosins in motility and chemotaxis. Interestingly, the combined defects of the myosin I mutants are similar to those of a single mutant with constitutive PKA activity, suggesting that PKA plays a role in the regulation of all three class I myosins.


Eukaryotic Cell | 2004

RasC plays a role in transduction of temporal gradient information in the cyclic-AMP wave of Dictyostelium discoideum.

Deborah Wessels; Rebecca Brincks; Spencer Kuhl; Vesna Stepanovic; Karla J. Daniels; Gerald Weeks; Chinten James Lim; George B. Spiegelman; Danny Fuller; Negin Iranfar; William F. Loomis; David R. Soll

ABSTRACT To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC−, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative studies revealed that rasC− cells translocate at the same velocity and exhibit chemotaxis up spatial gradients of cAMP with the same efficiency as control cells. However, rasC− cells exhibit defects in maintaining anterior-posterior polarity along the substratum and a single anterior pseudopod when translocating in buffer in the absence of an attractant. rasC− cells also exhibit defects in their responses to both the increasing and decreasing temporal gradients of cAMP in the front and the back of a wave. These defects result in the inability of rasC− cells to exhibit chemotaxis in a natural wave of cAMP. The inability to respond normally to temporal gradients of cAMP results in defects in the organization of the cytoskeleton, most notably in the failure of both F actin and myosin II to exit the cortex in response to the decreasing temporal gradient of cAMP in the back of the wave. While the behavioral defect in the front of the wave is similar to that of the myoA−/myoF− myosin I double mutant, the behavioral and cytoskeletal defects in the back of the wave are similar to those of the S13A myosin II regulatory light-chain phosphorylation mutant. Expression array data support the premise that the behavioral defects exhibited by the rasC− mutant are the immediate result of the absence of RasC function.


Journal of Cell Science | 2014

Interferon regulatory factor 6 regulates keratinocyte migration

Leah C. Biggs; Rachelle Naridze; Kris A. DeMali; Daniel F. Lusche; Spencer Kuhl; David R. Soll; Brian C. Schutte; Martine Dunnwald

ABSTRACT Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.5 days post-conception failed to close their wound compared with wild-type embryos. In vitro, Irf6-deficient murine embryonic keratinocytes were delayed in closing a scratch wound. Live imaging of the scratch showed deficient directional migration and reduced speed in cells lacking Irf6. To understand the underlying molecular mechanisms, cell–cell and cell–matrix adhesions were investigated. We show that wild-type and Irf6-deficient keratinocytes adhere similarly to all matrices after 60 min. However, Irf6-deficient keratinocytes were consistently larger and more spread, a phenotype that persisted during the scratch-healing process. Interestingly, Irf6-deficient keratinocytes exhibited an increased network of stress fibers and active RhoA compared with that observed in wild-type keratinocytes. Blocking ROCK, a downstream effector of RhoA, rescued the delay in closing scratch wounds. The expression of Arhgap29, a Rho GTPase-activating protein, was reduced in Irf6-deficient keratinocytes. Taken together, these data suggest that Irf6 functions through the RhoA pathway to regulate cellular migration.


Methods of Molecular Biology | 2006

Application of 2D and 3D DIAS to motion analysis of live cells in transmission and confocal microscopy imaging.

Deborah Wessels; Spencer Kuhl; David R. Soll

The chemotactic signal in Dictyostelium is a cAMP wave that is relayed over relatively large distances through a cell population during aggregation. Cells exhibit unique behaviors in response to the different spatial, temporal, and concentration components of the cAMP wave, suggesting that distinct signal transduction pathways are evoked in each of the various phases of the wave. For this reason, we designed a set of experimental protocols to test responses of normal and mutant Dictyostelium amoebae to the different components of a wave of chemoattractant. We then used computer-assisted two- (2D) and three-dimensional (3D) technologies (2D and 3D Dynamic Image Analysis System [DIAS]) for analysis of cells in the absence of a chemotactic signal (basic motile behavior) and in response to the temporal, spatial, and concentration components of the wave. As a result, we have elucidated parallel and independent pathways activated by specific phases of the cAMP wave. Likewise, human polymorphonuclear neutrophils (PMNs) respond to experimentally applied waves of the chemotactic peptide fMLP, and also exhibit discrete behavioral responses to the different phases. Using Dictyostelium as a paradigm, we applied our protocols to normal and diseased human PMNs and precisely defined a chemotactic defect. In this chapter, we describe methods for quantifying behaviors in Dictyostelium amoebae, PMNs, and other amoeboid cells using 2D and 3D DIAS. These methods are useful in the reconstruction and motion analysis of most migrating cells with transmitted and/or confocal microscopy.


Eukaryotic Cell | 2009

How a cell crawls and the role of cortical myosin II.

David R. Soll; Deborah Wessels; Spencer Kuhl; Daniel F. Lusche

ABSTRACT The movements of Dictyostelium discoideum amoebae translocating on a glass surface in the absence of chemoattractant have been reconstructed at 5-second intervals and motion analyzed by employing 3D-DIAS software. A morphometric analysis of pseudopods, the main cell body, and the uropod provides a comprehensive description of the basic motile behavior of a cell in four dimensions (4D), resulting in a list of 18 characteristics. A similar analysis of the myosin II phosphorylation mutant 3XASP reveals a role for the cortical localization of myosin II in the suppression of lateral pseudopods, formation of the uropod, cytoplasmic distribution of cytoplasm in the main cell body, and efficient motility. The results of the morphometric analysis suggest that pseudopods, the main cell body, and the uropod represent three motility compartments that are coordinated for efficient translocation. It provides a contextual framework for interpreting the effects of mutations, inhibitors, and chemoattractants on the basic motile behavior of D. discoideum. The generality of the characteristics of the basic motile behavior of D. discoideum must now be tested by similar 4D analyses of the motility of amoeboid cells of higher eukaryotic cells, in particular human polymorphonuclear leukocytes.


Journal of Cell Science | 2010

Ca2+ chemotaxis in Dictyostelium discoideum.

Amanda Scherer; Spencer Kuhl; Deborah Wessels; Daniel F. Lusche; Brent Raisley; David R. Soll

Using a newly developed microfluidic chamber, we have demonstrated in vitro that Ca2+ functions as a chemoattractant of aggregation-competent Dictyostelium discoideum amoebae, that parallel spatial gradients of cAMP and Ca2+ are more effective than either alone, and that cAMP functions as a stronger chemoattractant than Ca2+. Effective Ca2+ gradients are extremely steep compared with effective cAMP gradients. This presents a paradox because there is no indication to date that steep Ca2+ gradients are generated in aggregation territories. However, given that Ca2+ chemotaxis is co-acquired with cAMP chemotaxis during development, we speculate on the role that Ca2+ chemotaxis might have and the possibility that steep, transient Ca2+ gradients are generated during natural aggregation in the interstitial regions between cells.


Journal of Cell Science | 2012

The IplA Ca2+ channel of Dictyostelium discoideum is necessary for chemotaxis mediated through Ca2+, but not through cAMP, and has a fundamental role in natural aggregation.

Daniel F. Lusche; Deborah Wessels; Amanda Scherer; Karla J. Daniels; Spencer Kuhl; David R. Soll

During aggregation of Dictyostelium discoideum, nondissipating, symmetrical, outwardly moving waves of cAMP direct cells towards aggregation centers. It has been assumed that the spatial and temporal characteristics of the front and back of each cAMP wave regulate both chemokinesis and chemotaxis. However, during the period preceding aggregation, cells acquire not only the capacity to chemotax in a spatial gradient of cAMP, but also in a spatial gradient of Ca2+. The null mutant of the putative IplA Ca2+ channel gene, iplA−, undergoes normal chemotaxis in spatial gradients of cAMP and normal chemokinetic responses to increasing temporal gradients of cAMP, both generated in vitro. However, iplA− cells lose the capacity to undergo chemotaxis in response to a spatial gradient of Ca2+, suggesting that IplA is either the Ca2+ chemotaxis receptor or an essential component of the Ca2+ chemotaxis regulatory pathway. In response to natural chemotactic waves generated by wild-type cells, the chemokinetic response of iplA− cells to the temporal dynamics of the cAMP wave is intact, but the capacity to reorient in the direction of the aggregation center at the onset of each wave is lost. These results suggest that transient Ca2+ gradients formed between cells at the onset of each natural cAMP wave augment reorientation towards the aggregation center. If this hypothesis proves correct, it will provide a more complex contextual framework for interpreting D. discoideum chemotaxis.


Methods of Molecular Biology | 2009

2D and 3D Quantitative Analysis of Cell Motility and Cytoskeletal Dynamics

Deborah Wessels; Spencer Kuhl; David R. Soll

2D- and 3D-Dynamic Image Analysis Systems (2D- and 3D-DIAS) for quantitative analysis of cell motility and chemotaxis are described. Particular attention is given to protocols that have proven useful in the quantitation of cell shape changes and pseudopod dynamics during basic cell motility (i.e. crawling in the absence of a chemotactic or other type of extracellular signal) and directed motion. In addition, methods provided, highlight the applicability of this approach to the accurate phenotypic characterizations of cytoskeletal mutations in Dictyostelium discoideum, cytoskeletal alterations in metastatic cells, and cytoskeletal defects in chemotactically defective polymorphonuclear neutrophils.

Collaboration


Dive into the Spencer Kuhl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron D. Bossler

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar

Andrzej Slominski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny Fuller

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge