Spencer P. Pitre
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Spencer P. Pitre.
Journal of the American Chemical Society | 2013
Spencer P. Pitre; Christopher D. McTiernan; Hossein Ismaili; J. C. Scaiano
The photocatalytic hydroxylation of boronic acids with methylene blue as photosensitizer proceeds with high efficiency. Detailed time-resolved studies of the relevant rate constants provide a clear mechanistic understanding of excited-state processes and guided the selection of the photocatalyst and the optimization of experimental conditions.
Accounts of Chemical Research | 2016
Spencer P. Pitre; Christopher D. McTiernan; J. C. Scaiano
Over the past decade, the field of photoredox catalysis has gained increasing attention in synthetic organic chemistry because of its wide applicability in sustainable free-radical-mediated processes. Numerous examples have shown that under carefully optimized conditions, efficient and highly selective processes can be developed through excitation of a photosensitizer using inexpensive, readily available light sources. However, despite all of these recent advancements, some generalizations and/or misconceptions have become part of the photoredox culture, and often many of these discoveries lack in-depth investigations into the excited-state kinetics and underlying mechanisms. In this Account, we begin with a tutorial for understanding both the redox properties of excited states and how to measure the kinetics of excited-state processes. We discuss the generalization of direct excitation of closed-shell species to generate more potent reductive or oxidative excited states, using the helium atom as a quantitative example. We also outline how to apply redox potentials to calculate whether the proposed electron transfer events are thermodynamically feasible. In the second half of our tutorial, we discuss how to measure the kinetics of excited-state processes using techniques such as steady-state and time-resolved fluorescence and transient spectroscopy and how to apply the data using Stern-Volmer and kinetic analysis. Then we shift gears to discuss our recent contributions to the field of photoredox catalysis. Our lab focuses on developing transition-metal-free alternatives to ruthenium and iridium bipyridyl complexes for these transformations, with the goal of developing systems in which the reaction kinetics is more favorable. We have found that methylene blue, a member of the thiazine dye family, can be employed in photoredox processes such as oxidative hydroxylations of arylboronic acids to phenols. Interestingly, we were able to demonstrate that methylene blue is more efficient for this reaction than Ru(bpy)3Cl2, which upon further examination using transient spectroscopic techniques we were able to relate to the reductive quenching ability of the aliphatic amine. Recently we were also successful in applying methylene blue for radical trifluoromethylation reactions, which is discussed in detail. Finally, we have also demonstrated that common organic electron donors, such as α-sexithiophene, can be used in photoredox processes, which we demonstrate using the dehalogenation of vic-dibromides as a model system. This is a particularly interesting system because well-defined, long-lived intermediates allowed us to fully characterize the catalytic cycle. Once again, through an in-depth kinetic analysis we were able to gain valuable insights into our reaction mechanism, which demonstrates how powerful a tool proper kinetic analysis can be in the design and optimization of photoredox processes.
Scientific Reports | 2015
Spencer P. Pitre; Christopher D. McTiernan; Wyatt Vine; Rebecca DiPucchio; Michel Grenier; J. C. Scaiano
Photoredox catalysis provides many green opportunities for radical-mediated synthetic transformations. However, the determination of the underlying mechanisms has been challenging due to lack of quantitative methods that can be easily implemented in synthetic labs, where this research tends to be centered. We report here on the development, characterization and calibration of a novel actinometer based on the photocatalyst tris(2,2′-bipyridyl)ruthenium(II) chloride (Ru(bpy)3Cl2). By using the same molecule as the photocatalyst and the actinometer, we eliminate problems associated with matching sample spectral distribution, lamp-sample spectral overlap and other problems intrinsic to doing quantitative photochemistry in a laboratory that has little expertise in this area. In order to validate our actinometer system in determining the quantum yield of a Ru(bpy)3Cl2 photosensitized reaction, we test the Ru(bpy)3Cl2 catalyzed oxidation of benzhydrol to benzophenone as a model chain reaction. We also revive the rotating sector method by updating the technique for modern LED technologies and demonstrate how intermittent illumination on the timescale of milliseconds to seconds can help probe a chain reaction, using the benzhydrol to benzophenone oxidation to validate the technique. We envision these methods to have great implications in the field of photoredox catalysis, providing researchers with valuable research tools.
Catalysis Science & Technology | 2013
Hossein Ismaili; Spencer P. Pitre; J. C. Scaiano
Amine-derived radicals, formed through photocleavage of aromatic ketones containing amine moieties or by electron transfer between tertiary amines and the triplet state of carbonyl compounds, readily undergo the electron transfer processes and subsequent chemistry, usually performed with metal-containing photoredox catalysts, but under entirely metal-free conditions.
Journal of Photochemistry and Photobiology B-biology | 2016
Angélica M. Garcia; Hasitha de Alwis Weerasekera; Spencer P. Pitre; Brian McNeill; Eduardo Lissi; Ana M. Edwards; Emilio I. Alarcon
Comparable intracellular concentrations (≈30pmol/10(6) cells) of bovine serum albumin-ZnPc (BSA) adduct outperformed dipalmitoyl-phosphatidyl-choline (DPPC) liposomes containing ZnPc at photodynamic-killing of human cervical cancer cells (HeLa) after only 15min of irradiation using red light (λ>620nm, 30W/cm(2)). This result could not be simply explained in terms of dye aggregation within the carrier, since in the liposomes the dye was considerably less aggregated than in bovine serum albumin, formulation that was capable to induce cell apoptosis upon red light exposure. Thus, using specific organelle staining, our cumulative data points towards intrinsic differences in intra-cellular localization depending on the cargo vehicle used, being ZnPc:BSA preferentially located in the near vicinity of the nucleus and in the Golgi structures, while the liposomal formulation ZnPc:DPPC was preferentially located in cellular membrane and cytoplasm. In addition to those differences, using real-time advanced fluorescence lifetime imaging of HeLa cells loaded with the photosensitizer contained in the different vehicles, we have found that only for the ZnPc:BSA formulation, there was no significant changes in the fluorescence lifetime of the photosensitizer inside the cells. This contrasts with the in situ≈two-fold reduction of the fluorescence lifetime measured for the liposomal ZnPc formulation. Those observations point towards the superiority of the protein to preserve dye aggregation, and its photochemical activity, post-cell uptake, demonstrating the pivotal role of the delivery vehicle at determining the ultimate fate of a photosensitizer.
ACS Catalysis | 2017
Spencer P. Pitre; J. C. Scaiano; Tehshik P. Yoon
Indole alkaloids represent an important class of molecules, with many naturally occurring derivatives possessing significant biological activity. One area that requires further development in the synthesis of indole derivatives is the Diels-Alder reaction. In this work, we expand on our previously developed heterogeneous protocol for the [4+2] cycloaddition of indoles and electron-rich dienes mediated by platinum nanoparticles supported on titanium dioxide semiconductor particles (Pt(0.2%)@TiO2) with visible-light irradiation. This reaction proceeds with broad scope and is more efficient per incident photon than the previous homogeneous method, and the catalyst can be easily recycled and reused.
ACS Catalysis | 2014
Spencer P. Pitre; Christopher D. McTiernan; Hossein Ismaili; J. C. Scaiano
ACS Catalysis | 2014
Christopher D. McTiernan; Spencer P. Pitre; J. C. Scaiano
ACS Omega | 2016
Spencer P. Pitre; Christopher D. McTiernan; J. C. Scaiano
Advanced Synthesis & Catalysis | 2014
Christopher D. McTiernan; Spencer P. Pitre; Hossein Ismaili; J. C. Scaiano