Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Spiros D. Garbis is active.

Publication


Featured researches published by Spiros D. Garbis.


The Journal of Neuroscience | 2010

Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival.

Evangelia Emmanouilidou; Katerina Melachroinou; Theodoros Roumeliotis; Spiros D. Garbis; Maria P. Ntzouni; Lukas H. Margaritis; Leonidas Stefanis; Kostas Vekrellis

α-Synuclein is central in Parkinsons disease pathogenesis. Although initially α-synuclein was considered a purely intracellular protein, recent data suggest that it can be detected in the plasma and CSF of humans and in the culture media of neuronal cells. To address a role of secreted α-synuclein in neuronal homeostasis, we have generated wild-type α-synuclein and β-galactosidase inducible SH-SY5Y cells. Soluble oligomeric and monomeric species of α-synuclein are readily detected in the conditioned media (CM) of these cells at concentrations similar to those observed in human CSF. We have found that, in this model, α-synuclein is secreted by externalized vesicles in a calcium-dependent manner. Electron microscopy and liquid chromatography–mass spectrometry proteomic analysis demonstrate that these vesicles have the characteristic hallmarks of exosomes, secreted intraluminar vesicles of multivesicular bodies. Application of CM containing secreted α-synuclein causes cell death of recipient neuronal cells, which can be reversed after α-synuclein immunodepletion from the CM. High- and low-molecular-weight α-synuclein species, isolated from this CM, significantly decrease cell viability. Importantly, treatment of the CM with oligomer-interfering compounds before application rescues the recipient neuronal cells from the observed toxicity. Our results show for the first time that cell-produced α-synuclein is secreted via an exosomal, calcium-dependent mechanism and suggest that α-synuclein secretion serves to amplify and propagate Parkinsons disease-related pathology.


Journal of Proteome Research | 2009

Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis

Pavel Bouchal; Theodoros Roumeliotis; Roman Hrstka; Rudolf Nenutil; Borivoj Vojtesek; Spiros D. Garbis

The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p < or = 0.05). A quantitative comparison revealed 3/3 proteins with significantly increased/decreased level in metastatic primary tumor and 13/6 proteins with increased/decreased level in lymph node metastasis compared to nonmetastatic primary tumor (p < 0.01). Changes in selected differentially expressed proteins were verified with qRT-PCR. Although our pilot scale study does not warrant general biological conclusions, the synergic regulation of some proteins with related function (e.g., heme binding proteins, proteins of energetic metabolism, interferon induced proteins, proteins with adhesive function) determined in our sample set reflects the ability of our method in providing biologically meaningful data. The main conclusion from this pilot study was that our quantitative proteomic method constitutes a novel way of analyzing cancerous breast tissue biopsy samples that can be extended as part of a larger scale biomarker discovery program.


Journal of Proteome Research | 2008

Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry

Spiros D. Garbis; Stavros I. Tyritzis; Theodoros Roumeliotis; Panagiotis Zerefos; Eugenia G. Giannopoulou; Antonia Vlahou; Sophia Kossida; Jose I. Diaz; Stavros Vourekas; Constantin Tamvakopoulos; Kitty Pavlakis; Despina Sanoudou; Constantinos Constantinides

This study aimed to identify candidate new diagnosis and prognosis markers and medicinal targets of prostate cancer (PCa), using state of the art proteomics. A total of 20 prostate tissue specimens from 10 patients with benign prostatic hyperplasia (BPH) and 10 with PCa (Tumour Node Metastasis [TNM] stage T1-T3) were analyzed by isobaric stable isotope labeling (iTRAQ) and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS) approaches using a hybrid quadrupole time-of-flight system (QqTOF). The study resulted in the reproducible identification of 825 nonredundant gene products (p < or = 0.05) of which 30 exhibited up-regulation (> or =2-fold) and another 35 exhibited down-regulation (< or =0.5-fold) between the BPH and PCa specimens constituting a major contribution toward their global proteomic assessment. Selected findings were confirmed by immunohistochemical analysis of prostate tissue specimens. The proteins determined support existing knowledge and uncover novel and promising PCa biomarkers. The PCa proteome found can serve as a useful aid for the identification of improved diagnostic and prognostic markers and ultimately novel chemopreventive and therapeutic targets.


Nature Cell Biology | 2016

Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing

Panagiotis Galanos; Konstantinos Vougas; David Walter; Alexander Polyzos; Apolinar Maya-Mendoza; Emma J. Haagensen; Antonis Kokkalis; Fani-Marlen Roumelioti; Sarantis Gagos; Maria Tzetis; Begoña Canovas; Ana Igea; Akshay K. Ahuja; Ralph Zellweger; Sofia Havaki; Emanuel Kanavakis; Dimitris Kletsas; Igor B. Roninson; Spiros D. Garbis; Massimo Lopes; Angel R. Nebreda; Dimitris Thanos; J. Julian Blow; Paul A. Townsend; Claus Storgaard Sørensen; Jiri Bartek; Vassilis G. Gorgoulis

The cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4–CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery—an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.


Analytical Chemistry | 2011

A Novel Multidimensional Protein Identification Technology Approach Combining Protein Size Exclusion Prefractionation, Peptide Zwitterion−Ion Hydrophilic Interaction Chromatography, and Nano-Ultraperformance RP Chromatography/nESI-MS2 for the in-Depth Analysis of the Serum Proteome and Phosphoproteome: Application to Clinical Sera Derived from Humans with Benign Prostate Hyperplasia

Spiros D. Garbis; Theodoros Roumeliotis; Stavros I. Tyritzis; Kostas M. Zorpas; Kitty Pavlakis; Constantinos Constantinides

The current proof-of-principle study was aimed toward development of a novel multidimensional protein identification technology (MudPIT) approach for the in-depth proteome analysis of human serum derived from patients with benign prostate hyperplasia (BPH) using rational chromatographic design principles. This study constituted an extension of our published work relating to the identification and relative quantification of potential clinical biomarkers in BPH and prostate cancer (PCa) tissue specimens. The proposed MudPIT approach encompassed the use of three distinct yet complementary liquid chromatographic chemistries. High-pressure size-exclusion chromatography (SEC) was used for the prefractionation of serum proteins followed by their dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were then subjected to offline zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) fractionation followed by their online analysis with reversed-phase nano-ultraperformance chromatography (RP-nUPLC) hyphenated to nanoelectrospray ionization-tandem mass spectrometry using an ion trap mass analyzer. For the spectral processing, the sequential use of the SpectrumMill, Scaffold, and InsPecT software tools was applied for the tryptic peptide product ion MS(2) spectral processing, false discovery rate (FDR) assessment, validation, and protein identification. This milestone serum analysis study allowed the confident identification of over 1955 proteins (p ≤ 0.05; FDR ≤ 5%) with a broad spectrum of biological and physicochemical properties including secreted, tissue-specific proteins spanning approximately 12 orders of magnitude as they occur in their native abundance levels in the serum matrix. Also encompassed in this proteome was the confident identification of 375 phosphoproteins (p ≤ 0.05; FDR ≤ 5%) with potential importance to cancer biology. To demonstrate the performance characteristics of this novel MudPIT approach, a comparison was made with the proteomes resulting from the immunodepletion of the high abundant albumin and IgG proteins with offline first dimensional tryptic peptide separation with both ZIC-HILIC and strong cation exchange (SCX) chromatography and their subsequent online RP-nUPLC-nESI-MS(2) analysis.


British Journal of Cancer | 2012

Identification of markers of prostate cancer progression using candidate gene expression

Samantha Larkin; S. Holmes; I.A. Cree; T. Walker; V. Basketter; Bridget Bickers; Scott Harris; Spiros D. Garbis; Paul A. Townsend; Claire Aukim-Hastie

Background:Metastatic prostate cancer (PCa) has no curative treatment options. Some forms of PCa are indolent and slow growing, while others metastasise quickly and may prove fatal within a very short time. The basis of this variable prognosis is poorly understood, despite considerable research. The aim of this study was to identify markers associated with the progression of PCa.Methods:Artificial neuronal network analysis combined with data from literature and previous work produced a panel of putative PCa progression markers, which were used in a transcriptomic analysis of 29 radical prostatectomy samples and correlated with clinical outcome.Results:Statistical analysis yielded seven putative markers of PCa progression, ANPEP, ABL1, PSCA, EFNA1, HSPB1, INMT and TRIP13. Two data transformation methods were utilised with only markers that were significant in both selected for further analysis. ANPEP and EFNA1 were significantly correlated with Gleason score. Models of progression co-utilising markers ANPEP and ABL1 or ANPEP and PSCA had the ability to correctly predict indolent or aggressive disease, based on Gleason score, in 89.7% and 86.2% of cases, respectively. Another model of TRIP13 expression in combination with preoperative PSA level and Gleason score was able to correctly predict recurrence in 85.7% of cases.Conclusion:This proof of principle study demonstrates a novel association of carcinogenic and tumourigenic gene expression with PCa stage and prognosis.


Journal of Proteome Research | 2014

Whole Serum 3D LC-nESI-FTMS Quantitative Proteomics Reveals Sexual Dimorphism in the Milieu Intérieur of Overweight and Obese Adults

Nasser M. Al-Daghri; Omar S. Al-Attas; Harvey E. Johnston; Akul Singhania; Majed S. Alokail; Khalid M. Alkharfy; Sherif H. Abd-Alrahman; Shaun Sabico; Theodoros Roumeliotis; Antigoni Manousopoulou-Garbis; Paul A. Townsend; Christopher H. Woelk; George P. Chrousos; Spiros D. Garbis

Linking gender-specific differences to the molecular etiology of obesity has been largely based on genomic and transcriptomic evidence lacking endophenotypic insight and is not applicable to the extracellular fluid compartments, or the milieu intérieur, of the human body. To address this need, this study profiled the whole serum proteomes of age-matched nondiabetic overweight and obese females (n = 28) and males (n = 31) using a multiplex design with pooled biological and technical replicates. To bypass basic limitations of immunodepletion-based strategies, subproteome enrichment by size-exclusion chromatography (SuPrE-SEC) followed by iTRAQ 2D-LC-nESI-FTMS analysis was used. The study resulted in the reproducible analysis of 2472 proteins (peptide FDR < 5%, q < 0.05). A total of 248 proteins exhibited significant modulation between men and women (p < 0.05) that mapped to pathways associated with β-estradiol, lipid and prostanoid metabolism, vitamin D function, immunity/inflammation, and the complement and coagulation cascades. This novel endophenotypic signature of gender-specific differences in whole serum confirmed and expanded the results of previous physiologic and pharmacologic studies exploring sexual dimorphism at the genomic and transcriptomic level in tissues and cells. Conclusively, the multifactorial and pleiotropic nature of human obesity exhibits sexual dimorphism in the circulating proteome of importance to clinical study design.


Oncotarget | 2016

A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers

Christopher J. Hanley; Fergus Noble; Matthew Ward; Marc D. Bullock; Cole R. Drifka; Massimiliano Mellone; Antigoni Manousopoulou; Harvey E. Johnston; Annette Hayden; Stephen M. Thirdborough; Yuming Liu; David M. Smith; Toby Mellows; W. John Kao; Spiros D. Garbis; Alex H. Mirnezami; Timothy J. Underwood; Kevin W. Eliceiri; Gareth J. Thomas

Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-β treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.


The Journal of Neuroscience | 2015

BDNF Stimulation of Protein Synthesis in Cortical Neurons Requires the MAP Kinase-Interacting Kinase MNK1

Maja Genheden; Justin W. Kenney; Harvey E. Johnston; Antigoni Manousopoulou; Spiros D. Garbis; Christopher G. Proud

Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m7GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.


Oncogene | 2014

CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells

Claire Delehouze; Klaus Godl; Nadège Loaëc; Céline Bruyère; Nathalie Desban; Nassima Oumata; Hervé Galons; Theodoros Roumeliotis; Eugenia G. Giannopoulou; Jose Grenet; Devin Twitchell; Jill M. Lahti; Nicolas Mouchet; Marie-Dominique Galibert; Spiros D. Garbis; Laurent Meijer

To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of ‘-omics’ techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.

Collaboration


Dive into the Spiros D. Garbis's collaboration.

Top Co-Authors

Avatar

Theodoros Roumeliotis

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha Larkin

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge