Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Spiros Liras is active.

Publication


Featured researches published by Spiros Liras.


Journal of Medicinal Chemistry | 2015

Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists.

Huy N. Hoang; K Song; Timothy A. Hill; David R. Derksen; David J. Edmonds; W.M. Kok; Chris Limberakis; Spiros Liras; Paula M. Loria; Mascitti; Alan M. Mathiowetz; Justin M. Mitchell; David W. Piotrowski; David A. Price; Robert Vernon Stanton; Jacky Y. Suen; Jane M. Withka; David A. Griffith; David P. Fairlie

Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency. These structures can inform development of small molecule agonists of the GLP-1 receptor to treat type 2 diabetes.


Chemical Biology & Drug Design | 2013

The Future of Peptide‐based Drugs

David J. Craik; David P. Fairlie; Spiros Liras; David A. Price

The suite of currently used drugs can be divided into two categories – traditional ‘small molecule’ drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger ‘biologics’ typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side‐effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.


Nature Chemical Biology | 2011

On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds

Tina R White; Chad M Renzelman; Arthur C Rand; Taha Rezai; Cayla M. McEwen; Vladimir Gelev; Rushia Turner; Roger G. Linington; Siegfried S. F. Leung; Amit S. Kalgutkar; Jonathan N. Bauman; Yizhong Zhang; Spiros Liras; David A. Price; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Journal of Medicinal Chemistry | 2012

Discovery of (S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic Acid as a Hepatoselective Glucokinase Activator Clinical Candidate for Treating Type 2 Diabetes Mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; John Litchfield; Robert J. Aiello; Judith L. Treadway; John C. Pettersen; Martha L. Minich; Kevin J. Filipski; Christopher S. Jones; Meihua Tu; Gary E. Aspnes; Hud Risley; Jianwei Bian; Benjamin D. Stevens; Patricia Bourassa; Theresa D’Aquila; Levenia Baker; Nicole Barucci; Alan Robertson; Francis Bourbonais; David R. Derksen; Margit MacDougall; Over Cabrera; Jing Chen; Amanda Lee Lapworth; James A. Landro; William J. Zavadoski; Karen Atkinson; Nahor Haddish-Berhane; Beijing Tan

Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the enzyme at low glucose levels in the pancreas, leading to inappropriately excessive insulin secretion. It was therefore postulated that a liver selective activator may offer effective glycemic control with reduced hypoglycemia risk. Herein, we report structure-activity studies on a carboxylic acid containing series of glucokinase activators with preferential activity in hepatocytes versus pancreatic β-cells. These activators were designed to have low passive permeability thereby minimizing distribution into extrahepatic tissues; concurrently, they were also optimized as substrates for active liver uptake via members of the organic anion transporting polypeptide (OATP) family. These studies lead to the identification of 19 as a potent glucokinase activator with a greater than 50-fold liver-to-pancreas ratio of tissue distribution in rodent and non-rodent species. In preclinical diabetic animals, 19 was found to robustly lower fasting and postprandial glucose with no hypoglycemia, leading to its selection as a clinical development candidate for treating type 2 diabetes.


Synthetic Communications | 2000

A Mild Method for the Preparation of 1,3,4-Oxadiazoles: Triflic Anhydride Promoted Cyclization of Diacylhydrazines

Spiros Liras; Martin Patrick Allen; Barb E. Segelstein

Abstract Diacylhydrazines undergo cyclization upon treatment with triflic anhydride and pyridine to form the corresponding 1,3,4-oxadiazoles in yields ranging from 70--95%.


Angewandte Chemie | 2014

Comparative α-Helicity of Cyclic Pentapeptides in Water†

Aline Dantas de Araujo; Huy N. Hoang; W. Mei Kok; Frederik Diness; Praveer Gupta; Timothy A. Hill; Russell W. Driver; David A. Price; Spiros Liras; David P. Fairlie

Helix-constrained polypeptides have attracted great interest for modulating protein-protein interactions (PPI). It is not known which are the most effective helix-inducing strategies for designing PPI agonists/antagonists. Cyclization linkers (X1-X5) were compared here, using circular dichroism and 2D NMR spectroscopy, for α-helix induction in simple model pentapeptides, Ac-cyclo(1,5)-[X1-Ala-Ala-Ala-X5]-NH2, in water. In this very stringent test of helix induction, a Lys1→Asp5 lactam linker conferred greatest α-helicity, hydrocarbon and triazole linkers induced a mix of α- and 3₁₀-helicity, while thio- and dithioether linkers produced less helicity. The lactam-linked cyclic pentapeptide was also the most effective α-helix nucleator attached to a 13-residue model peptide.


Angewandte Chemie | 2014

Improving on Nature: Making a Cyclic Heptapeptide Orally Bioavailable†

Daniel S. Nielsen; Huy N. Hoang; Rink-Jan Lohman; Timothy A. Hill; Andrew J. Lucke; David J. Craik; David J. Edmonds; David A. Griffith; Charles J. Rotter; Roger Benjamin Ruggeri; David A. Price; Spiros Liras; David P. Fairlie

The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we investigate effects of heterocyclic constraints, intramolecular hydrogen bonds, and side chains on the oral bioavailability of cyclic heptapeptides. NMR-derived structures, amide H-D exchange rates, and temperature-dependent chemical shifts showed that the combination of rigidification, stronger hydrogen bonds, and solvent shielding by branched side chains enhances the oral bioavailability of cyclic heptapeptides in rats without the need for N-methylation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

Conan K. Wang; Susan E. Northfield; Barbara Colless; Stephanie Chaousis; Ingrid Hamernig; Rink-Jan Lohman; Daniel S. Nielsen; Christina I. Schroeder; Spiros Liras; David A. Price; David P. Fairlie; David J. Craik

Significance Peptides are valuable leads for drug development, offering advantages over other molecular classes. Specifically, they can bind potently and selectively to drug targets, including protein–protein interactions that are too challenging for small-molecule therapeutics. However, peptides are poor drugs because of their low in vivo stability and poor oral bioavailability. We propose a strategy for improving the oral bioavailability of peptides by identifying appropriate amides for chemical modification using temperature coefficients measured by NMR. The modified peptides have improved solvation properties, making them more membrane permeable. This approach for identifying sites for modification is a rapid method for guiding peptide drug design. Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.


MedChemComm | 2012

Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance

Arthur C Rand; Siegfried S. F. Leung; Heather Eng; Charles J. Rotter; Raman Sharma; Amit S. Kalgutkar; Yizhong Zhang; Manthena V. Varma; Kathleen A. Farley; Bhagyashree Khunte; Chris Limberakis; David A. Price; Spiros Liras; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

A series of cyclic peptides were designed and prepared to investigate the physicochemical properties that affect oral bioavailabilty of this chemotype in rats. In particular, the ionization state of the peptide was examined by the incorporation of naturally occurring amino acid residues that are charged in differing regions of the gut. In addition, data was generated in a variety of in vitro assays and the usefulness of this data in predicting the subsequent oral bioavailability observed in the rat is discussed.


Journal of Medicinal Chemistry | 2009

Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy

Patrick Robert Verhoest; Caroline Proulx-Lafrance; Michael Corman; Lois K. Chenard; Christopher John Helal; Xinjun Hou; Robin J. Kleiman; Shenping Liu; Eric S. Marr; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Anne W. Schmidt; Robert Williams; Frederick R. Nelson; Kari R. Fonseca; Spiros Liras

By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.

Collaboration


Dive into the Spiros Liras's collaboration.

Researchain Logo
Decentralizing Knowledge