Spyridon Ntougias
Democritus University of Thrace
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Spyridon Ntougias.
Plant and Soil | 2010
Nektarios Kavroulakis; Spyridon Ntougias; Maria I. Besi; Pelagia Katsou; Athanasia Damaskinou; Constantinos Ehaliotis; Georgios I. Zervakis; Kalliope K. Papadopoulou
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.
Systematic and Applied Microbiology | 2004
Spyridon Ntougias; Georgios I. Zervakis; Nektarios Kavroulakis; Constantinos Ehaliotis; Kalliope K. Papadopoulou
Spent mushroom compost (SMC) is the residual by-product of commercial Agaricus spp. cultivation, and it is mainly composed of a thermally treated cereal straw/animal manure mixture colonized by the fungal biomass. Research on the valorization of this material is mainly focusing on its use as soil conditioner and plant fertilizer. An investigation of the bacterial diversity in SMC was performed using molecular techniques in order to reveal the origin of SMC microflora and its potential effect on soil microbial communities after incorporation into agricultural soils. The bacterial population was estimated by the plate count method to a mean of 2.7 10(9) colony forming units (cfu) per g of dry weight, while the numbers of Gram-positive and Gram-negative bacteria were 1.9 10(9) and 4.9 10(8) cfu per g dw respectively as estimated by enumeration on semi-selective media. Fifty bacterial isolates were classified into 14 operational taxonomic units (OTUs) following ARDRA-PCR of the 16S rDNA gene. Sequencing of the 16S rDNA amplicon assigned 12 of the 14 OTUs to Gram-positive bacteria, associated with the genera Bacillus, Paenibacillus, Exiguobacterium, Staphylococcus, Desemzia, Carnobacterium, Brevibacterium, Arthrobacter and Microbacterium of the bacterial divisions Firmicutes and Actinobacteria. Two bacterial groups have phylogenetic links with the genera Comamonas and Sphingobacterium, which belong to beta-Proteobacteria and Bacteroidetes respectively. Two potentially novel bacteria are reported, which are associated with the genera Bacillus and Microbacterium. Most of the bacteria identified are of environmental origin, while strains related to species usually isolated from insects, animal and clinical sources were also detected. It appears that bacterial diversity in SMC is greatly affected by the origin of the initial material, its thermal pasteurization treatment and the potential unintended colonization of the mushroom substrate during the cultivation process.
Chemosphere | 2012
Spyridon Ntougias; Petr Baldrian; Constantinos Ehaliotis; Frantisek Nerud; Theodoros Antoniou; Věra Merhautová; Georgios I. Zervakis
Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluents decolorization.
Research in Microbiology | 2008
George Tsiamis; Katerina Katsaveli; Spyridon Ntougias; Nikos C. Kyrpides; Gary L. Andersen; Yvette M. Piceno; Kostas Bourtzis
A combination of culture-dependent and independent approaches was employed to identify the microbial community structure in a Greek solar saltern. A total of 219 and 132 isolates belonging, respectively, to Bacteria and Archaea, were recovered. All bacterial isolates were phylogenetically related to 43 members of Actinobacteria, Firmicutes and gamma-Proteobacteria. The archaeal isolates were placed within the Halobacteriaceae. At least four groups of isolates represented novel species among the Bacteria. High bacterial diversity, consisting of 417 subfamilies, was revealed using a high-density oligonucleotide microarray (PhyloChip). At the four stages of saltern operation analyzed, the archaeal community consisted of both Crenarchaeota and Euryarchaeota, except for the sediment where Crenarchaeota were not detected. The bacterial community in sediment consisted mainly of gamma-Proteobacteria and Actinobacteria, while, in hypersaline water, it was restricted to a few representatives of Bacteria. Members of alpha-Proteobacteria were the main constituents in saturated brine and crude salt, followed by gamma-Proteobacteria, Actinobacteria and Firmicutes. A large Bacteroidetes and Verrucomicrobia diversity was identified in saturated brine, while delta-Proteobacteria and Cloroflexi were abundant in crude salt. Significant changes in the microbial community structure were detected during a short time period, denoting a rapidly adaptive dynamic ecosystem and viable diversity. Prokaryotic members reported for the first time in solar salterns were identified.
Chemosphere | 2013
Spyridon Ntougias; Fragiskos Gaitis; Panagiotis Katsaris; Stavroula Skoulika; Nikiforos Iliopoulos; Georgios I. Zervakis
Olive mill wastewater (OMW) generated during the oil extraction from Olea europea L. var. koroneiki olives was sampled at the beginning, the middle and the end of the harvesting season for three successive crop production years, and from four olive mills. OMW samples were examined in respect to their physicochemical characteristics, fatty acid composition of the lipid fraction, and adverse effects on biomass production of nine white-rot fungi of the basidiomycetous genus Pleurotus. Total N, nitrogen species, potassium and phosphate concentrations as well as total phenolics content of OMW samples were influenced by the crop year but not from the harvest period (albeit higher values for nitrate, nitrite, phosphate and potassium as well as total phenolics contents were obtained during ripening of olives), whereas protein concentration, total organic carbon and total solids were not significantly affected by the crop year or the harvest period. In addition, fatty acids composition, i.e. nC14:0, nC16:1Δ9cis, nC17:1Δ10cis, nC18:0, nC18:1Δ9cis, nC22:0 and nC24:0 varied significantly during different crop years and harvest periods. Olive fruits maturity and biannual alternate-bearing appear to play key-roles in the fatty acid variation detected in OMW samples. OMW toxicity as evaluated by the mycelium growth of Pleurotus strains was influenced significantly by the phenolic content of OMW samples obtained during three successive crop years; in contrast, the olives harvest period did not affect Pleurotus biomass production. Hence, experimental data indicated that selected Pleurotus strains could serve as bioindicators of OMW toxicity. Development of viable OMW detoxification processes as well as the exploitation of the effluents fertilizing value are discussed in the light of the above findings.
Bioresource Technology | 2011
Dimitrios Komilis; Iro Kontou; Spyridon Ntougias
Despite the numerous compost stability and maturity tests, no universally accepted compost stability or maturity index exists. The fluorescein di-acetate (FDA) enzymatic assay, originating from soil studies, is examined here as a potential new compost stability test, and is compared to microbial respiration and phytotoxicity indices. Thirteen composts were used in the study from different source materials. Static microbial respiration activity indices calculated were the cumulative O(2) consumptions, O(2) consumption rates, total C-CO(2) production, the respiratory quotient and the bio C/N ratio. Compost phytotoxicity was quantified via a 7-day tomato seed germination assay. Results showed that the net fluorescein release rates correlated with all stability indices. The germination index marginally correlated with the fluorescein release rates, but not with any of the other stability indices. New limits to classify composts regarding their stability were proposed.
Journal of Bioscience and Bioengineering | 2011
Ilias Zafiriadis; Spyridon Ntougias; Christos Nikolaidis; Anastasios G. Kapagiannidis; Alexander Aivasidis
Enhanced biological phosphorus removal (EBPR) is a widely applied method for nutrients removal, although little is known about the key genes regulating the complex biochemical transformations occurring in activated sludge during phosphorus removal. In the present study, the nitrite reductase gene (nirS) diversity and the denitrifying polyphosphate accumulating organisms (DPAOs) population, grown in a bench scale, two-sludge, continuous flow plant, operating for biological anoxic phosphorus removal (DEPHANOX-type), fed with municipal wastewater, were examined by means of physicochemical analyses and the application of molecular techniques. The DEPHANOX configuration highly influenced biomass phosphorus as well as polyhydroxyalkanoates content and facilitated the enrichment of the DPAOs population. The application of double probe fluorescent in situ hybridization (double probe FISH) technique revealed that DPAOs comprised 20% of the total bacterial population. Based on clone libraries construction and nirS gene sequencing analysis, a pronounced shift in denitrifying bacteria diversity was identified during activated sludge acclimatization. Moreover, nirS gene sequences distinct from those detected in any known bacterial strain or environmental clone were identified. This is the first report studying the microbial properties of activated sludge in a DEPHANOX-type system using molecular techniques.
Bioresource Technology | 2015
Spyridon Ntougias; Petr Baldrian; Constantinos Ehaliotis; Frantisek Nerud; Věra Merhautová; Georgios I. Zervakis
Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxides addition resulted in drastic OMWs decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluents high phenolic load, while peroxidases were stable and active during the entire process.
Bioresource Technology | 2016
Nikolaos Remmas; Paraschos Melidis; Efthymia Katsioupi; Spyridon Ntougias
The effects of external carbon source addition on the nitrification and denitrification process were investigated in an intermittently aerated and fed membrane bioreactor treating landfill leachate by recording system performance, and amoA and nirS diversity dynamics using pyrosequencing. By adding 950mg/L glycerol, denitrification was optimized, resulting in total nitrogen removal efficiency of 81.0±2.4%. Under these conditions, amoA diversity was dominated by genotypes related to Nitrosomonas europaea, while increase in leachates content and in glycerol addition by 50% led to irreversible inhibition of nitrification and enhanced ammonia accumulation, causing a severe suppression of Nitrosomonas and an increase in the relative abundance of Nitrosospira. However, this increase not only affected ammonia oxidizers, but also caused a massive shift in denitrifying community structure, resulting in the suppression of Arenimonas metalli-, Candidatus Accumulibacter- and Sulfuritalea hydrogenivorans-nirS related genotypes and the predominance of nirS-associated with Acidovorax and Thaurea sp.
Fungal Biology | 2014
Georgios I. Zervakis; Spyridon Ntougias; Maria Letizia Gargano; Maria I. Besi; Elias Polemis; Milton A. Typas; Giuseppe Venturella
The Pleurotus eryngii species-complex comprises choice edible mushrooms growing on roots and lower stem residues of Apiaceae (umbellifers) plants. Material deriving from extensive sampling was studied by mating compatibility, morphological and ecological criteria, and through analysis of ITS1-5.8S-ITS2 and IGS1 rRNA sequences. Results revealed that P. eryngii sensu stricto forms a diverse and widely distributed aggregate composed of varieties elaeoselini, eryngii, ferulae, thapsiae, and tingitanus. Pleurotuseryngii subsp. tuoliensis comb. nov. is a phylogenetically sister group to the former growing only on various Ferula species in Asia. The existence of Pleurotusnebrodensis outside of Sicily (i.e., in Greece) is reported for the first time on the basis of molecular data, while P. nebrodensis subsp. fossulatus comb. nov. is a related Asiatic taxon associated with the same plant (Prangos ferulacea). Last, Pleurotusferulaginis sp. nov. grows on Ferulago campestris in northeast Italy, Slovenia and Hungary; it occupies a distinct phylogenetic position accompanied with significant differences in spore size and mating incompatibility versus other Pleurotus populations. Coevolution with umbellifers and host/substrate specificity seem to play key roles in speciation processes within this fungal group. An identification key to the nine Pleurotus taxa growing in association with Apiaceae plants is provided.