Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srdjan Ostojic is active.

Publication


Featured researches published by Srdjan Ostojic.


The Journal of Neuroscience | 2009

How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-Correlation between Spike Trains

Srdjan Ostojic; Nicolas Brunel; Vincent Hakim

Functional interactions between neurons in vivo are often quantified by cross-correlation functions (CCFs) between their spike trains. It is therefore essential to understand quantitatively how CCFs are shaped by different factors, such as connectivity, synaptic parameters, and background activity. Here, we study the CCF between two neurons using analytical calculations and numerical simulations. We quantify the role of synaptic parameters, such as peak conductance, decay time, and reversal potential, and analyze how various patterns of connectivity influence CCF shapes. In particular, we find that the symmetry of the CCF distinguishes in general, but not always, the case of shared inputs between two neurons from the case in which they are directly synaptically connected. We systematically examine the influence of background synaptic inputs from the surrounding network that set the baseline firing statistics of the neurons and modulate their response properties. We find that variations in the background noise modify the amplitude of the cross-correlation function as strongly as variations of synaptic strength. In particular, we show that the postsynaptic neuron spiking regularity has a pronounced influence on CCF amplitude. This suggests an efficient and flexible mechanism for modulating functional interactions.


Nature Neuroscience | 2014

Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons

Srdjan Ostojic

Asynchronous activity in balanced networks of excitatory and inhibitory neurons is believed to constitute the primary medium for the propagation and transformation of information in the neocortex. Here we show that an unstructured, sparsely connected network of model spiking neurons can display two fundamentally different types of asynchronous activity that imply vastly different computational properties. For weak synaptic couplings, the network at rest is in the well-studied asynchronous state, in which individual neurons fire irregularly at constant rates. In this state, an external input leads to a highly redundant response of different neurons that favors information transmission but hinders more complex computations. For strong couplings, we find that the network at rest displays rich internal dynamics, in which the firing rates of individual neurons fluctuate strongly in time and across neurons. In this regime, the internal dynamics interact with incoming stimuli to provide a substrate for complex information processing and learning.


PLOS Computational Biology | 2011

From Spiking Neuron Models to Linear-Nonlinear Models

Srdjan Ostojic; Nicolas Brunel

Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.


Nature | 2006

Scale-invariance and universality of force networks in static granular matter

Srdjan Ostojic; Ellak Somfai; Bernard Nienhuis

Force networks form the skeleton of static granular matter. They are the key factor that determines mechanical properties such as stability, elasticity and sound transmission, which are important for civil engineering and industrial processing. Previous studies have focused on investigations of the global structure of external forces (the boundary condition) and on the probability distribution of individual contact forces. So far, however, precise knowledge of the disordered spatial structure of the force network has remained elusive. Here we report that molecular dynamics simulations of realistic granular packings reveal scale invariance of clusters of particles interacting by means of relatively strong forces. Despite visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, thereby determining a universality class. Unexpectedly, the flat ensemble of force configurations (a simple generalization of equilibrium statistical mechanics) belongs to this universality class, whereas some widely studied simplified models do not. This implies that the elasticity of the grains and their geometrical disorder do not affect the universal mechanical properties.


Journal of Computational Neuroscience | 2009

Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities

Srdjan Ostojic; Nicolas Brunel; Vincent Hakim

We investigate how synchrony can be generated or induced in networks of electrically coupled integrate-and-fire neurons subject to noisy and heterogeneous inputs. Using analytical tools, we find that in a network under constant external inputs, synchrony can appear via a Hopf bifurcation from the asynchronous state to an oscillatory state. In a homogeneous net work, in the oscillatory state all neurons fire in synchrony, while in a heterogeneous network synchrony is looser, many neurons skipping cycles of the oscillation. If the transmission of action potentials via the electrical synapses is effectively excitatory, the Hopf bifurcation is supercritical, while effectively inhibitory transmission due to pronounced hyperpolarization leads to a subcritical bifurcation. In the latter case, the network exhibits bistability between an asynchronous state and an oscillatory state where all the neurons fire in synchrony. Finally we show that for time-varying external inputs, electrical coupling enhances the synchronization in an asynchronous network via a resonance at the firing-rate frequency.


Journal of Neurophysiology | 2011

Interspike interval distributions of spiking neurons driven by fluctuating inputs

Srdjan Ostojic

Interspike interval (ISI) distributions of cortical neurons exhibit a range of different shapes. Wide ISI distributions are believed to stem from a balance of excitatory and inhibitory inputs that leads to a strongly fluctuating total drive. An important question is whether the full range of experimentally observed ISI distributions can be reproduced by modulating this balance. To address this issue, we investigate the shape of the ISI distributions of spiking neuron models receiving fluctuating inputs. Using analytical tools to describe the ISI distribution of a leaky integrate-and-fire (LIF) neuron, we identify three key features: 1) the ISI distribution displays an exponential decay at long ISIs independently of the strength of the fluctuating input; 2) as the amplitude of the input fluctuations is increased, the ISI distribution evolves progressively between three types, a narrow distribution (suprathreshold input), an exponential with an effective refractory period (subthreshold but suprareset input), and a bursting exponential (subreset input); 3) the shape of the ISI distribution is approximately independent of the mean ISI and determined only by the coefficient of variation. Numerical simulations show that these features are not specific to the LIF model but are also present in the ISI distributions of the exponential integrate-and-fire model and a Hodgkin-Huxley-like model. Moreover, we observe that for a fixed mean and coefficient of variation of ISIs, the full ISI distributions of the three models are nearly identical. We conclude that the ISI distributions of spiking neurons in the presence of fluctuating inputs are well described by gamma distributions.


PLOS Computational Biology | 2013

A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

Evan S. Schaffer; Srdjan Ostojic; L. F. Abbott

Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.


The Journal of Neuroscience | 2015

Neuronal Morphology Generates High-Frequency Firing Resonance

Srdjan Ostojic; Germán Szapiro; Eric Schwartz; Boris Barbour; Nicolas Brunel; Vincent Hakim

The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.


Physical Review Letters | 2006

Elasticity from the Force Network Ensemble in Granular Media

Srdjan Ostojic; Debabrata Panja

Transmission of forces in static granular materials is studied within the framework of the force network ensemble, by numerically evaluating the mechanical response of hexagonal packings of frictionless grains and rectangular packings of frictional grains. In both cases, close to the point of application of the overload, the response is nonlinear and displays two peaks, while at larger length scales, it is linear and elasticlike. The crossover between these two behaviors occurs at a depth that increases with the magnitude of the overload and decreases with increasing friction.


PLOS Computational Biology | 2017

Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

Francesca Mastrogiuseppe; Srdjan Ostojic

Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

Collaboration


Dive into the Srdjan Ostojic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Hakim

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Germán Szapiro

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge