Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sreedhar Kilaru is active.

Publication


Featured researches published by Sreedhar Kilaru.


Nature | 2008

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

Francis L. Martin; Andrea Aerts; Dag Ahrén; Annick Brun; E. G. J. Danchin; F. Duchaussoy; J. Gibon; Annegret Kohler; Erika Lindquist; V. Pereda; Asaf Salamov; Harris Shapiro; Jan Wuyts; D. Blaudez; M. Buée; P. Brokstein; Björn Canbäck; D. Cohen; P. E. Courty; P. M. Coutinho; Christine Delaruelle; John C. Detter; A. Deveau; Stephen P. DiFazio; Sébastien Duplessis; L. Fraissinet-Tachet; E. Lucic; P. Frey-Klett; C. Fourrey; Ivo Feussner

Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains ∼20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


FEBS Journal | 2006

Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences

Patrik J. Hoegger; Sreedhar Kilaru; Timothy Y. James; Jason R. Thacker; Ursula Kües

A phylogenetic analysis of more than 350 multicopper oxidases (MCOs) from fungi, insects, plants, and bacteria provided the basis for a refined classification of this enzyme family into laccases sensu stricto (basidiomycetous and ascomycetous), insect laccases, fungal pigment MCOs, fungal ferroxidases, ascorbate oxidases, plant laccase‐like MCOs, and bilirubin oxidases. Within the largest group of enzymes, formed by the 125 basidiomycetous laccases, the gene phylogeny does not strictly follow the species phylogeny. The enzymes seem to group at least partially according to the lifestyle of the corresponding species. Analyses of the completely sequenced fungal genomes showed that the composition of MCOs in the different species can be very variable. Some species seem to encode only ferroxidases, whereas others have proteins which are distributed over up to four different functional clusters in the phylogenetic tree.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)

Jason E. Stajich; Sarah K. Wilke; Dag Ahrén; Chun Hang Au; Bruce W. Birren; Mark Borodovsky; Claire Burns; Björn Canbäck; Lorna A. Casselton; Chi Keung Cheng; Jixin Deng; Fred S. Dietrich; David C. Fargo; Mark L. Farman; Allen C. Gathman; Jonathan M. Goldberg; Roderic Guigó; Patrick J. Hoegger; James Hooker; Ashleigh Huggins; Timothy Y. James; Takashi Kamada; Sreedhar Kilaru; Chinnapa Kodira; Ursula Kües; Doris M. Kupfer; Hoi Shan Kwan; Alexandre Lomsadze; Weixi Li; Walt W. Lilly

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 108 synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.


Current Genetics | 2006

The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies

Sreedhar Kilaru; Patrik J. Hoegger; Ursula Kües

Seventeen non-allelic laccase genes and one gene footprint are present in the genome of Coprinopsis cinerea. Two gene subfamilies were defined by intron positions and similarity of deduced gene products, one with 15 members (lcc1–lcc15) and one with 2 members (lcc16, lcc17). The first subfamily divides in the phylogenetic tree of deduced proteins into smaller clusters that probably reflect recent gene duplication events. Different laccase genes diverged from each other both by frequent synonymous and non-synonymous codon changes. Mainly synonymous codon changes accumulate in alleles, with up to 12% total codon differences between given pairs of alleles. Overexpression of the 17 laccase genes under the control of a constitutive promoter identified nine active enzymes from subfamily 1. All of these showed laccase activities with DMP (2,6-dimethoxy phenol) as substrate but only eight of them also with ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. Lcc16 and Lcc17 share certain sequence features with ferroxidases but enzyme assays failed to show such activity. Lcc15 is expected to be non-functional in laccase activity due to an internal deletion of about 150 amino acids. Transcripts were obtained from all genes but splice junctions for three genes were not congruent with translation into a functional protein.


New Phytologist | 2009

Phylogenetic analysis, genomic organization, and expression analysis of multi‐copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor

Pierre-Emmanuel Courty; P. J. Hoegger; Sreedhar Kilaru; Annegret Kohler; Marc Buée; Jean Garbaye; Francis L. Martin; Ursula Kües

In forest soils, ectomycorrhizal and saprotrophic Agaricales differ in their strategies for carbon acquisition, but share common gene families encoding multi-copper oxidases (MCOs). These enzymes are involved in the oxidation of a variety of soil organic compounds. The MCO gene family of the ectomycorrhizal fungus Laccaria bicolor is composed of 11 genes divided into two distinct subfamilies corresponding to laccases (lcc) sensu stricto (lcc1 to lcc9), sharing a high sequence homology with the coprophilic Coprinopsis cinerea laccase genes, and to ferroxidases (lcc10 and lcc11) that are not present in C. cinerea. The fet3-like ferroxidase genes lcc10 and lcc11 in L. bicolor are each arranged in a mirrored tandem orientation with an ftr gene coding for an iron permease. Unlike C. cinerea, L. bicolor has no sid1/sidA gene for siderophore biosynthesis. Transcript profiling using whole-genome expression arrays and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed that some transcripts were very abundant in ectomycorrhizas (lcc3 and lcc8), in fruiting bodies (lcc7) or in the free-living mycelium grown on agar medium (lcc9 and lcc10), suggesting a specific function of these MCOs. The amino acid composition of the MCO substrate binding sites suggests that L. bicolor MCOs interact with substrates different from those of saprotrophic fungi.


The EMBO Journal | 2011

Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track

Martin Schuster; Sreedhar Kilaru; Peter Ashwin; Congping Lin; Nicholas J. Severs; Gero Steinberg

Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet‐like accumulation at MT plus‐ends to receive kinesin‐3‐delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ∼55 dynein motors. About half of the motors are slowly turned over (T1/2: ∼98 s) and they are kept at the plus‐ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T1/2: ∼10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ∼10% of the EEs fall off the MT plus‐ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.


The EMBO Journal | 2012

Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase

Martin Schuster; Steffi Treitschke; Sreedhar Kilaru; Justin E. Molloy; Nicholas J. Harmer; Gero Steinberg

Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall‐forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F‐actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin‐17 motor domain, is travelling along both MTs and F‐actin. This transport is independent of kinesin‐3, but mediated by kinesin‐1 and myosin‐5. Arriving vesicles pause beneath the plasma membrane, but only ∼15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1‐bound vesicles transiently bind F‐actin but show no motility in vitro. Thus, kinesin‐1, myosin‐5 and dynein mediate bi‐directional motility, whereas myosin‐17 introduces a symmetry break that allows polarized secretion.


Current Genetics | 2004

The laccase gene family in Coprinopsis cinerea (Coprinus cinereus)

Patrik J. Hoegger; Mónica Navarro-González; Sreedhar Kilaru; Matthias Hoffmann; Elisha D. Westbrook; Ursula Kües

Abstract In this study, we isolated and sequenced eight non-allelic laccase genes from Coprinopsis cinerea (Coprinus cinereus) homokaryon AmutBmut. These eight genes represent the largest laccase gene family identified so far in a single haploid fungal genome. We analyzed the phylogenetic relationships between these genes by intron positions, amino acid sequence conservation and similarities in promoter sequences. All deduced protein products have the laccase signature sequences L1–L4, the typical conserved cysteine and the ten histidine residues which are ligands in the two laccase copper-binding centers, T1 and T2/T3. Proteins Lcc2 and Lcc3 of Coprinopsis cinerea are most similar to the acidic, membrane-associated laccase CLAC2 from Coprinellus congregatus implicated in neutralization of acidic medium. All other laccases from the saprophyte Coprinopsis cinerea, including the well described enzyme Lcc1, form a cluster separate from these three enzymes and from various laccases of wood-rotting and plant-pathogenic basidiomycetes.


Nature Communications | 2014

Long-distance endosome trafficking drives fungal effector production during plant infection

Ewa Bielska; Yujiro Higuchi; Martin Schuster; Natascha Steinberg; Sreedhar Kilaru; Nicholas J. Talbot; Gero Steinberg

To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.


Applied and Environmental Microbiology | 2009

Establishing molecular tools for genetic manipulation of the pleuromutilin-producing fungus Clitopilus passeckerianus.

Sreedhar Kilaru; Catherine M. Collins; Amanda J. Hartley; Andy M. Bailey; Gary D. Foster

ABSTRACT We describe efficient polyethylene glycol (PEG)-mediated and Agrobacterium-mediated transformation systems for a pharmaceutically important basidiomycete fungus, Clitopilus passeckerianus, which produces pleuromutilin, a diterpene antibiotic. Three dominant selectable marker systems based on hygromycin, phleomycin, and carboxin selection were used to study the feasibility of PEG-mediated transformation of C. passeckerianus. The PEG-mediated transformation of C. passeckerianus protoplasts was successful and generated hygromycin-resistant transformants more efficiently than either phleomycin or carboxin resistance. Agrobacterium-mediated transformation with plasmid pBGgHg containing hph gene under the control of the Agaricus bisporus gpdII promoter led to hygromycin-resistant colonies and was successful when homogenized mycelium and fruiting body gill tissue were used as starting material. Southern blot analysis of transformants revealed the apparently random integration of the transforming DNA to be predominantly multiple copies for the PEG-mediated system and a single copy for the Agrobacterium-mediated system within the genome. C. passeckerianus actin and tubulin promoters were amplified from genomic DNA and proved successful in driving green fluorescent protein and DsRed expression in C. passeckerianus, but only when constructs contained a 5′ intron, demonstrating that the presence of an intron is prerequisite for efficient transgene expression. The feasibility of RNA interference-mediated gene silencing was investigated using gfp as a target gene easily scored in C. passeckerianus. Upon transformation of gfp antisense constructs into a highly fluorescent strain, transformants were recovered that exhibited either reduced or undetectable fluorescence. This was confirmed by Northern blotting showing depletion of the target mRNA levels. This demonstrated that gene silencing is a suitable tool for modulating gene expression in C. passeckerianus. The molecular tools developed in this study should facilitate studies aimed at gene isolation or characterization in this pharmaceutically important species.

Collaboration


Dive into the Sreedhar Kilaru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Kües

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Latz

University of Exeter

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge