Srikanth Kudithipudi
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Srikanth Kudithipudi.
Human Molecular Genetics | 2011
Arunkumar Dhayalan; Raluca Tamas; Ina Bock; Anna Tattermusch; Emilia Dimitrova; Srikanth Kudithipudi; Sergey Ragozin; Albert Jeltsch
Mutations in the ATRX protein are associated with the alpha-thalassemia and mental retardation X-linked syndrome (ATR-X). Almost half of the disease-causing mutations occur in its ATRX-Dnmt3-Dnmt3L (ADD) domain. By employing peptide arrays, chromatin pull-down and peptide binding assays, we show specific binding of the ADD domain to H3 histone tail peptides containing H3K9me3. Peptide binding was disrupted by the presence of the H3K4me3 and H3K4me2 modification marks indicating that the ATRX-ADD domain has a combined readout of these two important marks (absence of H3K4me2 and H3K4me3 and presence of H3K9me3). Disease-causing mutations reduced ATRX-ADD binding to H3 tail peptides. ATRX variants, which fail in the H3K9me3 interaction, show a loss of heterochromatic localization in cells, which indicates the chromatin targeting function of the ADD domain of ATRX. Disruption of H3K9me3 binding may be a general pathogenicity pathway of ATRX mutations in the ADD domain which may explain the clustering of disease mutations in this part of the ATRX protein.
Epigenetics | 2011
Ina Bock; Arunkumar Dhayalan; Srikanth Kudithipudi; Ole Brandt; Philipp Rathert; Albert Jeltsch
Chromatin structure is greatly influenced by histone tail post-translational modifications (PTM), which also play a central role in epigenetic processes. Antibodies against modified histone tails are central research reagents in chromatin biology and molecular epigenetics. We applied Celluspots peptide arrays for the specificity analysis of 36 commercial antibodies from different suppliers which are directed towards modified histone tails. The arrays contained 384 peptides from 8 different regions of the N-terminal tails of histones, viz. H3 1-19, 7-26, 16-35 and 26-45, H4 1-19 and 11-30, H2A 1-19 and H2B 1-19, featuring 59 post-translational modifications in many different combinations. Using various controls we document the reliability of the method. Our analysis revealed previously undocumented details in the specificity profile. Most of the antibodies bound well to the PTM they have been raised for, but some failed. In addition some antibodies showed high cross-reactivity and most antibodies were inhibited by specific additional PTMs close to the primary one. Furthermore, specificity profiles for antibodies directed towards the same modification sometimes were very different. The specificity of antibodies used in epigenetic research is an important issue. We provide a catalog of antibody specificity profiles for 36 widely used commercial histone tail PTM antibodies. Better knowledge about the specificity profiles of antibodies will enable researchers to implement necessary control experiments in biological studies and allow more reliable interpretation of biological experiments using these antibodies.
BMC Biochemistry | 2011
Ina Bock; Srikanth Kudithipudi; Raluca Tamas; Goran Kungulovski; Arunkumar Dhayalan; Albert Jeltsch
BackgroundEpigenetic reading domains are involved in the regulation of gene expression and chromatin state by interacting with histones in a post-translational modification specific manner. A detailed knowledge of the target modifications of reading domains, including enhancing and inhibiting secondary modifications, will lead to a better understanding of the biological signaling processes mediated by reading domains.ResultsWe describe the application of Celluspots peptide arrays which contain 384 histone peptides carrying 59 post translational modifications in different combinations as an inexpensive, reliable and fast method for initial screening for specific interactions of reading domains with modified histone peptides. To validate the method, we tested the binding specificities of seven known epigenetic reading domains on Celluspots peptide arrays, viz. the HP1ß and MPP8 Chromo domains, JMJD2A and 53BP1 Tudor domains, Dnmt3a PWWP domain, Rag2 PHD domain and BRD2 Bromo domain. In general, the binding results agreed with literature data with respect to the primary specificity of the reading domains, but in almost all cases we obtained additional new information concerning the influence of secondary modifications surrounding the target modification.ConclusionsWe conclude that Celluspots peptide arrays are powerful screening tools for studying the specificity of putative reading domains binding to modified histone peptides.
Chemistry: A European Journal | 2012
Mara Florea; Srikanth Kudithipudi; Ana Rei; María José González‐Álvarez; Albert Jeltsch; Werner M. Nau
The demand for practical and convenient enzyme assays for histone lysine methyltransferases (HKMTs) emerges along with the rapid development of this young class of enzymes. A supramolecular reporter pair composed of p-sulfonatocalix[4]arene (CX4) and the fluorescent dye lucigenin (LCG) has been used to monitor enzymatic trimethylation of lysine residues in peptide substrates. The assay affords a switch-ON fluorescence response and operates in a continuous, real-time, and label-free fashion. The underlying working principle relies on the higher affinity of the macrocycle towards the trimethylated product of the enzymatic reaction as compared to the substrate, which allows the assay to be carried out in the product-selective mode. The final product incorporates a trimethylammonium moiety, a known high-affinity binding motif for CX4. Two substrates corresponding to the H3 N-terminal tail, namely, S2 (RTKQTARKSTGGKAP) and S6 (QTARKSTGGS), were selected as model compounds for methylation with the Neurospora crassa Dim-5 enzyme and investigated by the newly developed supramolecular tandem HKMTs assay. Only the longer substrate S2 underwent methylation in solution. The potential of the assay for inhibitor screening was demonstrated by means of inhibition studies with 1,10-phenanthroline to afford an inhibition constant of (70±20) μM.
Chemistry & Biology | 2014
Srikanth Kudithipudi; Cristiana Lungu; Philipp Rathert; Nicole Happel; Albert Jeltsch
The nuclear receptor binding SET [su(var) 3-9, enhancer of zeste, trithorax] domain-containing protein 1 (NSD1) protein lysine methyltransferase (PKMT) was known to methylate histone H3 lysine 36 (H3K36). We show here that NSD1 prefers aromatic, hydrophobic, and basic residues at the -2, -1 and +2, and +1 sites of its substrate peptide, respectively. We show methylation of 25 nonhistone peptide substrates by NSD1, two of which were (weakly) methylated at the protein level, suggesting that unstructured protein regions are preferred NSD1 substrates. Methylation of H4K20 and p65 was not observed. We discovered strong methylation of H1.5 K168, which represents the best NSD1 substrate protein identified so far, and methylation of H4K44 which was weaker than H3K36. Furthermore, we show that Sotos mutations in the SET domain of NSD1 inactivate the enzyme. Our results illustrate the importance of specificity analyses of PKMTs for understanding protein lysine methylation signaling pathways.
Genome Research | 2014
Goran Kungulovski; Ina Kycia; Raluca Tamas; Renata Z. Jurkowska; Srikanth Kudithipudi; Chisato Henry; Richard Reinhardt; Paul Labhart; Albert Jeltsch
Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies.
Biochimica et Biophysica Acta | 2014
Srikanth Kudithipudi; Albert Jeltsch
Methylation of lysine residues is an important post-translational modification of histone and non-histone proteins, which is introduced by protein lysine methyltransferases (PKMTs). An increasing number of reports demonstrate that aberrant lysine methylation plays a central role in carcinogenesis that is often correlated with abnormal expression of PKMTs. Recent whole genome and whole transcriptome sequencing projects have also discovered several somatic mutations in PKMTs that frequently appear in various tumors. These include chromosomal translocations that lead to aberrant expression or mistargeting of PKMTs and nonsense or frameshift mutations, which cause the loss of the protein function. Another type of mutations are missense mutations which may lead to the loss of enzyme activity, but may also alter the properties of PKMTs either by changing the product or substrate specificity or by increasing the enzymatic activity finally leading to a gain-of-function phenotype. In this review, we provide an overview of the roles of EZH2, SETD2, NSD family, SMYD family, MLL family and DOT1L PKMTs in cancer focusing on the effects of somatic cancer mutations in these enzymes. Investigation of the effect of somatic cancer mutations in PKMTs is pivotal to understand the general role of this important class of enzymes in carcinogenesis and to improve and develop more individualized cancer therapies.
Biochimie | 2012
Srikanth Kudithipudi; Arunkumar Dhayalan; Adam Fiseha Kebede; Albert Jeltsch
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R(17)-H(18)-(R(19)KY)-K(20)-(V(21)ILFY)-(L(22)FY)-R(23). Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R(17) of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the -3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried.
Biochimica et Biophysica Acta | 2015
Maren Kirstin Schuhmacher; Srikanth Kudithipudi; Denis Kusevic; Sara Weirich; Albert Jeltsch
The SUV39H1 and SUV39H2 enzymes introduce H3K9me3, which is essential for the viability of mammalian cells. It was the aim of the present work to investigate the substrate specificity and product pattern of SUV39H2. Methylation of peptide SPOT arrays showed that SUV39H2 recognizes a long motif on H3 comprising T6-K14, with highly specific readout of R8, S10, T11 and G12 and partial specificity at T6, A7, G13 and K14. Modification of R8 and phosphorylation of S10 or T11 lead to a reduction or loss of SUV39H2 activity towards H3K9. The specificity of SUV39H2 differs from other H3K9 PKMTs, like Dim-5 or G9a, and these biochemical differences can be explained by the structures of the corresponding enzymes. Based on the specificity profile we identified additional non-histone candidate substrates in human proteins, but all of them were only weakly methylated by SUV39H2 at the peptide level. We conclude that SUV39H2 displays a high preference for the methylation of H3. Using the catalytic SET domain we show here that the enzyme prefers H3K9me0 as a substrate over H3K9me1 and H3K9me2 and it introduces the first two methyl groups into H3K9me0 in a processive reaction. SUV39H2 can transfer up to three methyl groups to lysine 9 of histone H3 but the last methylation reaction is much slower than the first two steps. We also demonstrate that the N324K mutant in the SET domain of SUV39H2 that has been shown to cause an inherited nasal skin disease in Labrador Retrievers renders SUV39H2 inactive. Differences in the circular dichroism spectra of wild type and mutant proteins indicated that the mutation causes slight structural changes.
Journal of Visualized Experiments | 2014
Srikanth Kudithipudi; Denis Kusevic; Sara Weirich; Albert Jeltsch
Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.