Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srikanth Rapole is active.

Publication


Featured researches published by Srikanth Rapole.


Metabolites | 2015

Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview

Jorge Pereira; Priscilla Porto-Figueira; Carina Cavaco; Khushman Taunk; Srikanth Rapole; Rahul Dhakne; Hampapathalu Nagarajaram; José S. Câmara

Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.


Omics A Journal of Integrative Biology | 2014

Toward more transparent and reproducible omics studies through a common metadata checklist and data publications.

Eugene Kolker; Vural Ozdemir; Lennart Martens; William S. Hancock; Gordon A. Anderson; Nathaniel Anderson; Sukru Aynacioglu; Ancha Baranova; Shawn R. Campagna; Rui Chen; John Choiniere; Stephen P. Dearth; Wu-chun Feng; Lynnette R. Ferguson; Geoffrey C. Fox; Dmitrij Frishman; Robert L. Grossman; Allison P. Heath; Roger Higdon; Mara H. Hutz; Imre Janko; Lihua Jiang; Sanjay Joshi; Alexander E. Kel; Joseph W. Kemnitz; Isaac S. Kohane; Natali Kolker; Doron Lancet; Elaine Lee; Weizhong Li

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.


Current Proteomics | 2014

A Simple Protein Extraction Method for Proteomic Analysis of Diverse Biological Specimens

Panga Jaipal Reddy; Aishwarya Anand Rao; Darpan Malhotra; Samridhi Sharma; Ravinder Kumar; Rekha Jain; Kishore Gollapalli; Namita Pendharkar; Srikanth Rapole; Sanjeeva Srivastava

The success of a proteomic experiment largely depends on the quality and quantity of the protein extract. Currently, various protocols are available for extraction of proteins from different types of samples; however, further optimization is required for every new sample type. Hence, a common protein extraction protocol is desirable. In the present study, soluble proteins were extracted from six diverse samples using TRIzol without any additional clean-up step and subjected to 2-DE and 2D-DIGE analysis for global protein expression profiling. Image analysis using IMP7 and DeCyder showed good coverage, reproducibility and quality of the gel. MS analysis of 24 spots from all the six samples showed good score and coverage for the identified proteins. Additionally, this method facilitated the concurrent isolation of RNA from the same cell lysates with high integrity and quality, suitable for transcriptomic analysis. Thus, we demonstrate the use of a common protein extraction protocol involving TRIzol reagent for 2-DE, 2D-DIGE and MS analysis using six diverse samples and show its suitability for concomitant transcriptomic studies.


Journal of Proteomics | 2015

Investigation of serum proteome alterations in human endometriosis.

Mainak Dutta; Elavarasan Subramani; Khushman Taunk; Akshada Gajbhiye; Shubhendu Seal; Namita Pendharkar; Snigdha Dhali; Chaitali Datta Ray; Indrani Lodh; Baidyanath Chakravarty; Swagata Dasgupta; Srikanth Rapole; Koel Chaudhury

UNLABELLED Endometriosis is a common benign gynecological disease, characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. The present study involves investigation of alterations in the serum proteome of endometriosis patients compared to healthy controls using 2DE and 2D-DIGE combined with MALDI TOF/TOF-MS. Comparison of serum proteome of endometriosis patients and healthy subjects revealed 25 significant differentially expressed proteins. Gene ontology and network analysis, performed using PANTHER, DAVID, WebGestalt and STRING, revealed that the differentially expressed proteins are majorly involved in response to stimulus, immune system, metabolic, localization and cellular processes. For serum diagnostic marker identification, several robust statistical screening procedures were applied to identify the set of the most significant proteins responsible for successful diagnosis of different endometriosis stages. Partial least squares (PLS) based marker selection tool and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to identify the most significant proteins for disease prediction. Western blotting validation in a separate cohort of patients revealed that haptoglobin (HP), Ig kappa chain C region (IGKC), alpha-1B-glycoprotein (A1BG) can be considered effective serum protein markers for the diagnosis of Stage II, III and IV endometriosis. For diagnosis of Stage I, only IGKC and HP seemed promising. BIOLOGICAL SIGNIFICANCE Globally, about 12 in 100 women of reproductive age are diagnosed with endometriosis. The pathogenesis of the disease still remains unclear, leading to non-specific therapeutic approaches for disease management. Moreover, there is a delay of 8-12years in correct diagnosis after the initial onset of symptoms leading to a considerable impact on the womans lifestyle. Also, the gold standard for diagnosis of endometriosis, laparoscopy, is an invasive procedure. The value of a noninvasive or semi-invasive diagnostic test for endometriosis with easily accessible fluids such as plasma, serum, urine, and saliva is, therefore, rightfully recognized. The present study is expected to considerably improve the understanding of the disease pathogenesis along with improved diagnostics and therapeutic approaches leading to better management of the disease.


Journal of Proteomics | 2015

A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics

Panga Jaipal Reddy; Sandipan Ray; Gajanan Sathe; Gajbhiye A; Prasad Ts; Srikanth Rapole; Dulal Panda; Sanjeeva Srivastava

UNLABELLED The rapid emergence of microbial drug resistance indicates the urgent need for development of new antimicrobial agents. Bacterial cell division machinery is considered as a promising antimicrobial target. Totarol is a naturally existing diterpenoid, which has the ability to restrain bacterial growth by perturbing the cell division. The present study was conducted to investigate the proteomic alterations in Bacillus subtilis as a consequence of totarol treatment to decipher its mechanism of action and possible molecular targets. Cellular proteome of the totarol treated B. subtilis AH75 strain was analyzed by using multiple complementary proteomic approaches. After the drug treatment, 12, 38 and 139 differentially expressed (1.5 fold change) proteins were identified using 2-DE, DIGE and iTRAQ analyses, respectively. In silico functional analysis of the identified differentially expressed proteins indicated a possible effect of totarol on the central metabolism for energy production, heme biosynthesis and chemotaxis. Interestingly, the primary dehydrogenases, which play a vital role in generating the reducing equivalent, were found to be repressed after totarol treatment indicating an apparent metabolic shutdown. Consequently, multiple cellular assays including resazurin assay and FACS analysis of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining confirmed the effect of totarol on respiratory activity and cellular metabolism. BIOLOGICAL SIGNIFICANCE The exact mechanism of action of totarol is still unclear and further investigations are essential to identify the molecular/cellular targets of this potential antimicrobial agent. The present study demonstrates the application of differential proteome to decipher the mechanism of action and molecular targets of totarol in B. subtilis. Our quantitative proteome analysis revealed that totarol induced alterations in the expression levels of 139 proteins (1.5 fold change and ≥2 peptides) in B. subtilis. Findings obtained from this study indicate that totarol treatment leads to metabolic shutdown by repressing the major central metabolic dehydrogenases in B. subtilis. In addition, expression levels of universal chaperone proteins, heme biosynthesis, and ribosomal proteins were found to be altered, which caused the filamentation of the bacteria. To the best of our knowledge, this is the foremost inclusive investigation describing totarol induced alterations in B. subtilis proteome and diverse physiological processes. We anticipate that this in depth proteomic study may contribute to a better understanding of the mode of action of totarol and its primary molecular and cellular targets.


Proteomics | 2016

Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics

Akshada Gajbhiye; Raju Dabhi; Khushman Taunk; Garikapati Vannuruswamy; Sourav RoyChoudhury; Ragini Adhav; Shubhendu Seal; Anupama Mane; Santhakumari Bayatigeri; Manas Kumar Santra; Koel Chaudhury; Srikanth Rapole

Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel‐based and gel‐free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D‐DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM‐based validation in a separate cohort testified a panel of 21 proteins such as zinc‐alpha2‐glycoprotein, A2GL, retinol‐binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1‐antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls.


Journal of Proteomics | 2016

Quantitative tissue proteomic investigation of invasive ductal carcinoma of breast with luminal B HER2 positive and HER2 enriched subtypes towards potential diagnostic and therapeutic biomarkers

Namita Pendharkar; Akshada Gajbhiye; Khushman Taunk; Sourav RoyChoudhury; Snigdha Dhali; Shubhendu Seal; Anupama Mane; Subodhini A. Abhang; Manas Kumar Santra; Koel Chaudhury; Srikanth Rapole

Worldwide, breast cancer is one of the frequently diagnosed cancers in women with high mortality if not diagnosed at early stage. Although biomarker discoveries through various proteomic approaches have been studied in breast cancer, a limited number of studies have explored the invasive ductal carcinoma with Luminal B HER2 positive (LB) and HER2 enriched (HE) subtypes. The present study employed the complementary quantitative proteomic approaches to find a panel of markers that could discriminate LB and HE subtypes as well as early (ES) and late stages (LS) of these subtypes. A total of 67 and 68 differentially expressed proteins were identified by DIGE for the subtype and stage wise categories, respectively. Multivariate statistical analysis was employed to identify the set of most significant proteins, which could discriminate between these two subtypes and also early and late stages under study. Immunoblotting and MRM based validation in a separate cohort of samples confirmed that panel of biosignatures for LB are APOA1, GELS, HS90B, EF1A1, NHRF1 and PRDX3 and for HE are PRDX1, CATD, CALR, ATPB and CH60. For the diagnosis of early and late stages the potential markers are TPM4, CATD, PRDX3, ANXA3, HSPB1 and CALR, TRFE, GELS, CH60, CAPG, NHRF1, 1433G, GRP78 respectively.


Omics A Journal of Integrative Biology | 2015

Proteomics Analyses of Bacillus subtilis after Treatment with Plumbagin, a Plant-Derived Naphthoquinone

Panga Jaipal Reddy; Sayantan Ray; Gajanan Sathe; Prasad Ts; Srikanth Rapole; Dulal Panda; Sanjeeva Srivastava

Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine.


Journal of Proteomics | 2015

Quantitative proteomic analysis of global effect of LLL12 on U87 cell's proteome: An insight into the molecular mechanism of LLL12

Rekha Jain; Prajakta Kulkarni; Snigdha Dhali; Srikanth Rapole; Sanjeeva Srivastava

UNLABELLED Glioblastoma multiforme (GBM) is one of the most devastating and dreadful WHO grade IV brain tumors associated with poor survival rate and limited therapeutics. Signal transducer and activator of transcription factor 3 (STAT3) is persistently active in several cancers, including gliomas, and STAT3 inhibitors hold great promise for treatment of glioma. LLL12, a curcumin derivative, inhibits STAT3 functions, thereby reduces growth of GBM. However, the global effects of targeting STAT3 using LLL12 have not been studied well. To shed light on this aspect, we performed quantitative proteomic analyses using differential in-gel electrophoresis (2D-DIGE) and isobaric tags for relative and absolute quantitation (iTRAQ) as well as label-free mass spectrometric analysis with 0.5μM (IC50) concentration of LLL12. Through this approach, we identified a total dataset of 1012 proteins with 1% FDR, of which 143 proteins were differentially expressed associated with various cellular functions. Results suggest that LLL12 influences central cellular metabolism and cytoskeletal proteins, in addition to its apoptosis inducing and anti-angiogenic activities, which altogether contribute to its anti-tumorigenic function. Interestingly, triose phosphate isomerase (TPI), phosphoglycerate mutase 1 (PGAM1), adaptor molecule (CRK2), protein DJ-1 (PARK7) and basic transcription factor 3 (BTF3) were found to be down-regulated and can be studied further to understand their therapeutic potential in gliomas. TPI1 and PGAM1 protein expressions were validated using immunoblot. Conclusively, our results suggest the therapeutic potential of LLL12 and it can be investigated further for a significant role in glioma treatment. BIOLOGICAL SIGNIFICANCE LLL12 holds great promise for therapeutic development in gliomas with constitutive expression of STAT3. This study investigated the global effect of LLL12 on the proteome of U87 glioma cells using complementary proteomic approaches, and our findings suggest that LLL12 influences central metabolism, translation, transport processes, and cytoskeleton of a cell in addition to its anti-angiogenic and apoptosis inducing functions which altogether contributes to anti-tumorigenic activity of LLL12. This study leads to the identification of several proteins which may serve as prognostic or predictive markers in GBM. We identified TPI1, PGAM1, CRK and BTF3 as potential therapeutic targets and further investigations on these candidates may facilitate therapeutic development.


Scientific Reports | 2016

Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection

Rakesh Ganji; Snigdha Dhali; Arshad Rizvi; Srikanth Rapole; Sharmistha Banerjee

Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management.

Collaboration


Dive into the Srikanth Rapole's collaboration.

Top Co-Authors

Avatar

Koel Chaudhury

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sanjeeva Srivastava

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Manas Kumar Santra

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Panga Jaipal Reddy

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Prasad P. Kulkarni

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Tushar H. More

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Akshada Gajbhiye

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Gulshan R. Walke

Agharkar Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sourav RoyChoudhury

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge